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Summary

The aim of this topics course is to introduce students to basic asymptotic methods that
are used in Statistics and to highlight their importance. Special attention will be paid to
likelihood based asymptotics for parametric models, focusing on the asymptotic properties
of the maximum likelihood estimator.

The course will combine the development of general asymptotic tools with their appli-
cation to some much-used results in statistics (such as, for example, the derivation of the
asymptotic distribution of the log likelihood-ratio statistic, the 1/2 adjustment to the bino-
mial counts for bias reduction in log-odds estimation etc.).

Advantages and shortcomings of different asymptotic methods will be explored using
computer simulation.

For the development of the current set of notes, the main references that have been
consulted are Pace and Salvan (1997) and Young and Smith (2005) (mainly chapters 8 and
9). The textbook by Brazzale et al. (2007) contains numerous real-data illustrations on how
asymptotic results can be used to draw accurate inferences in complex situations. Some other
textbooks that have been consulted are Cox and Hinkley (1974), Barndorff-Nielsen and Cox
(1989) and van der Vaart (1998) and Cox (2006).
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Chapter 1

Introduction

1.1 Inference for a scalar parameter

Consider observations y1, . . . , yn from n independent random variables Y1, . . . , Yn with density
functions fYi(yi;β) depending on a scalar parameter β.

The log-likelihood for β is defined as l(β; {yi}) =
�n

i=1 log fYi(yi;β). The maximum

likelihood estimator β̂ is defined as the value of β that maximizes l(β) ≡ l(β; {Yi}). The
observed information function is defined as j(β) = −d2l(β)/dβ2 and the expected information
as i(β) = Eβ(j(β)). Both 1/j(β̂) and 1/i(β̂) provide an estimator for the standard error of
the asymptotic distribution of the maximum likelihood estimator.

The log-likelihood, the maximum likelihood estimator and the observed/expected infor-
mation can serve as the basic ingredients for likelihood based inferences about β. For this,
these quantities can be combined to provide a pivotal quantity :

Definition 1.1. A function T (S,β) of S ≡ S(Y1, . . . , Yn) and the parameter β, is said to
be a pivotal quantity for inferences about β (or simply a pivot), if its distribution (pivotal
distribution) does not depend on β and if for any value s of S the function T (s,β) is monotone
decreasing in β.

If we were able to find a pivotal quantity for a given problem, then we could easily
draw inferences about β by constructing confidence intervals and calculating p-values. In
particular, if we knew that T (S,β) is a pivotal quantity then we could find constants c1 and
c2 such that

P (c1 ≤ T (S,β) ≤ c2) = 1− α , for all β ,

by merely using the quantiles of the pivotal distribution. The above relationship can be
rewritten as

P (L(S) ≤ β ≤ U(S)) = 1− α , for all β . (1.1)

Hence for an observed value s of S, (L(s), U(s)) is a 100(1− α)% confidence interval1 for β.
Equivalently, for testing the hypothesis H0 : β ≤ β0 against the alternative H1 : β > β0 we
could calculate the p-value P (Z ≥ T (s,β0)), where Z is distributed according to the pivotal
distribution, and reject H0 for small p-values.

1Expression (1.1) should not be seen as assigning probabilities to the unknown parameter β. It is merely
specifying a hypothetical long run of statements about β a proportion 1−α of which are correct. If we observe
s for S, β ∈ (T (s), U(s)) is one of this long run of statements.
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Example 1.1. (Inferences about the mean of a Normal population with known
variance) Suppose that Y1, . . . , Yn are independent and identically distributed random vari-
ables from a Normal distributed with mean µ and known variance σ2. The maximum like-
lihood estimator for µ is the sample average Ȳ which is distributed according to a Normal
distribution with mean µ and variance σ2/n. Thus T (Ȳ , µ) =

√
n(Ȳ − µ)/σ is a pivot for

µ and the pivotal distribution is N(0, 1). Hence upon observing y1, . . . , yn, a 100(1 − a)%
equi-tailed confidence interval for µ is

�
ȳ − z1−α/2

σ√
n
, ȳ + z1−α/2

σ√
n

�
,

where z1−α/2 is the (1− α/2)th quantile of the standard Normal.

However, in many cases it is difficult or even impossible to construct pivotal quantities.
In those cases an approximate pivot could be used instead to obtain approximate inferences
about β. Approximate pivots are defined again as in (1.1) with the difference that T (S,β)
has asymptotically a distribution not depending on β and, possibly, is a monotone decreasing
function in β only in a region of the observed value s. Asymptotically here means as n → ∞,
where n is the sample size, or more generally some other measure of how information about
β accumulates. The most well-used approximate pivots are the signed likelihood root, the
score pivot and the Wald pivot, which are defined as

r(β) ≡ r(β̂,β) = sign(β̂ − β)
�
2
�
l(β̂)− l(β)

��1/2
,

s(β) ≡ s(β̂,β) = j(β̂)−1/2dl(β)/dβ ,

t(β) ≡ t(β̂,β) = j(β̂)1/2(β̂ − β) ,

respectively, and, as we will see in later chapters, asymptotically all have a standard Normal
distribution. The same limiting distribution applies if j(β) is replaced by either j(β̂) or i(β) or
i(β̂). Despite the fact that all r(θ), s(θ) and t(θ) have the same asymptotic distributions, the
accuracy of the N(0, 1) approximation for finite n has to justified, most often by simulation.

1.2 A simple example

As an example consider the illustrative setting in Brazzale et al. (2007, Section 2.2). Assume
n independent and identically distributed random variables from the exponential distribution
with mean 1/λ, that is

f(yi;λ) = λ exp {−λyi} , λ > 0 , yi > 0 (i = 1, . . . , n) . (1.2)

A simple analysis gives that l(λ) = n(log λ − λȲ ) is unimodal with a unique maximum at
λ̂ = 1/ȳ and that j(λ) = i(λ) = n/λ2. Then, the approximate pivots of the previous section
have the forms

r(λ) = sign
�
1− Ȳ λ

��
2n

�
Ȳ λ− log(Ȳ λ)− 1

�
,

s(λ) =

√
n
�
1− Ȳ λ

�

Ȳ λ
t(λ) =

√
n
�
1− Ȳ λ

�
.
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Brazzale et al. (2007) argue that the evidence on some unknown parameter β can be
appropriately summarized by plotting the log-likelihood for β and the so-called significance

function, which is defined as the p-value for testing the hypothesis H0 : β ≥ β0 versus the
alternative H1 : β < β0. For example, a significance function based on r(β) is Φ(r(β)), where
Φ(.) denotes the distribution function of a standard Normal random variable.

In this particular case of an exponential sample, an exact pivot can be found by noting
that X = nλȲ is distributed according to a gamma distribution with shape n and scale 1.
That is the distribution function of X is

f(x) =
xn−1 exp (−x)

Γ(n)
, x > 0 .

Then, e(λ) = z1−F (nλȲ ), F (x) =
� x
0 f(t)dt is an exact pivot with N(0, 1) pivotal distribution

and can be used to examine the performance of inferences based on approximate pivots. The
100(1− a)% confidence interval based on the exact pivot is

�
gn,a/2
nȳ

,
gn,1−a/2

nȳ

�
,

where gn,a/2 is the a/2th quantile of the gamma distribution with shape n and scale 1.
Assume that we observe ȳ = 1 from a sample of size n = 1. Substituting to the latter

confidence interval, the 95% confidence interval for λ based on the exact pivot is (0.025, 3.689).
The log-likelihood and the significance functions for the pivots can be found in Figure 1.1.

The log-likelihood is quite asymmetric in this example and hence we expect confidence in-
tervals based on the asymptotic normality of the Wald pivot not to perform well. Indeed,
a simple calculation, as the one of Example 1.1, shows that the 100(1 − a)% approximate
confidence interval based on the Wald pivot has the form

�
1

ȳ
−

z1−a/2√
nȳ

,
1

ȳ
+

z1−a/2√
nȳ

�
,

and so for n = 1 and ȳ = 1 and at the 95% nominal level, the Wald confidence interval for
λ is (−0.96, 2.96), which is quite unsatisfactory for a positive parameter. Furthermore, note
that in the bottom plot of Figure 1.1 the score pivot does not intersect z0.025 (the bottom
grey line) for the plotted values of λ. Actually, for n = 1 and ȳ = 1 the score pivot never
intersects that line as it has an asymptote at −1. Hence, based on such data, according to the
score pivot, we do not have sufficient evidence to reject H0 : λ ≥ λ0 for any value of λ0 and
at any sensible significance level. Furthermore, in that case, the 95% approximate confidence
interval has an infinite upper limit. On the other hand, the signed likelihood root seems to
perform well, even for n = 1, giving (0.057, 4.403) for a 95% approximate confidence interval
for λ.

Of course, we should not be strict in judging the performance of the above approximate
pivots, because here we used them (inappropriately) for inferences for λ when n = 1 and they
are designed to perform well as n grows without limit. A more careful examination results in
Table 1.1 which contains 95% confidence intervals based on the four aforementioned pivots
for ȳ = 1 and several values of n. Comparing the approximate confidence intervals with the
exact one we clearly see that, in this case, the likelihood root performs considerably well for
all values of n, while the score and Wald pivots give satisfactory results for n = 5 and start
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Table 1.1: 95% equi-tailed confidence intervals for λ based on the exact, Wald, score and likelihood
root pivots for ȳ = 1 and various values of n.

Pivot
n = 1 n = 5 n = 10 n = 20 n = 50

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

e(λ) 0.025 3.689 0.325 2.048 0.480 1.708 0.611 1.484 0.742 1.296
t(λ) -0.960 2.960 0.124 1.877 0.380 1.620 0.562 1.438 0.723 1.277
s(λ) 0.338 ∞ 0.533 8.099 0.617 2.630 0.695 1.780 0.783 1.383
r(λ) 0.057 4.403 0.359 2.149 0.501 1.754 0.623 1.504 0.748 1.303

giving good approximations to the exact confidence interval for n ≥ 10, being very accurate
as soon as n = 50.

Hence, even for small sample sizes inferences for λ can be based on approximate pivots
with small error.

As already mentioned, exact pivots are not generally available and thus the need for
asymptotic approximations of good performance is apparent. The discussion of the next
chapters focuses on developing the asymptotic arguments that result in the aforementioned
asymptotic pivots, developing corrections to the moments of the maximum likelihood estima-
tor that can result in estimators with improved properties, and constructing more accurate
pivots.
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Figure 1.1: Log-likelihoog of λ (top) with the grey vertical lines showing the 95% approximate confi-
dence interval for λ based on the likelihood root. Significance functions for the exact and approximate
pivots (bottom). The grey lines correspond to probabilities 0.975 and 0.025.
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Chapter 2

Some basic tools for asymptotics

The current chapter concerns the exposition of the main tools that are used for
the development of asymptotic approximations in Statistics. The presentation
begins with Taylor’s theorem, which enables the approximation of any sufficiently
smooth function by an appropriate polynomial. A review of the basic modes of
convergence of sequences of random variables is given, with parallel review of
well-known limiting results in Probability and Statistics, such as the weak law of
large numbers and the central limit theorem. The moments and cumulants of a
distribution function are thoroughly studied as they provide the basic ingredients
of the approximations that are considered in the current course. In conclusion,
the general form of a (stochastic) asymptotic expansion is presented.

2.1 Taylor series

Theorem 2.1. (Taylor) Let f be a real function on [a, b] and suppose that the mth derivative

of f , denoted f (m)
, is continuous on [a, b] and f (m+1)(u) exists for every u ∈ (a, b). If x and

x0 are distinct points of [a, b], then there exists c between x and x0 such that

f(x) =
m�

k=0

(x− x0)
k f

(k)(x0)

k!
+ (x− x0)

m+1 f
(m+1)(c)

(m+ 1)!
. (2.1)

Theorem 2.1 is a core result of mathematical analysis, which allows the approximation of
any sufficiently smooth function by a polynomial of finite degree.

Note that Taylor’s theorem provides the error encountered when f(x) is approximated
by the first term of the right hand side of (2.1). More importantly, if Rm(x) is that error of
approximation and given that

��f (m+1)(x)
�� ≤ N , N > 0, for x ∈ (a, b), then

|Rm(x)| ≤ N |x− x0|m+1

(m+ 1)!
.

Furthermore, if f is infinitely differentiable in a neighbourhood of x0 and if |x− x0|k
��f (k)(c)

�� /k! →
0 as k → ∞, we can write

f(x) =
∞�

k=0

(x− x0)
k f

(k)(x0)

k!
. (2.2)

Expression (2.2) is called the Taylor series expansion of f around x0.
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If f is a function of d variables then the Taylor series expansion of f around a d-vector
a = (a1, . . . , ad) is

f(x1, . . . , xd) =
∞�

k1=1

. . .
∞�

kd=1

(x1 − a1)k1 . . . (xd − ad)kd

k1! . . . kd!

�
∂k1+...+kdf(x1, . . . xd)

∂xk11 . . . ∂xkdd

�

x=a

. (2.3)

Some important Taylor series expansions around 0 (also called MacLaurin series) along
with their convergence range are

exp(x) =
∞�

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ . . . , x ∈ � , (2.4)

log(1 + x) =
∞�

k=1

(−1)k+1x
k

k
= x− x2

2
+

x3

3
− x4

4
+ . . . , |x| ≤ 1 , x �= −1 , (2.5)

log(1− x) = −
∞�

k=1

xk

k
= −(x+

x2

2
+

x3

3
+

x4

4
+ . . .) , |x| ≤ 1 , x �= 1 . (2.6)

2.2 Modes of convergence and some limiting results

2.2.1 Convergence of sequences of random variables

Definition 2.1. The sequence of independent and identically distributed random variables
{Y1, Y2, . . .} is said to converge in probability to c ∈ � if, given � > 0 and δ > 0, there exists
an n0(δ, �) such that, for all n > n0(δ, �),

P (|Yn − c| > �) < δ .

We write Yn
p−→ c1.

Definition 2.2. The sequence of independent and identically distributed random variables
{Y1, Y2, . . .} is said to converge in distribution if there exists a distribution function F such
that

lim
n→∞

P (Yn ≤ y) = F (y) ,

for all y that are continuity points of the limiting distribution. If F is the distribution function

of the random variable Y , we write Yn
d−→Y ; if Y has a distribution with a standard code,

such as N(0, 1), then we can also write Yn
d−→N(0, 1).

Particular examples of convergence of sequences of random variables are the weak law of
large numbers and the central limit theorem. Let X1, . . . , Xn be independent and identically
distributed random variables with mean µ and finite variance σ2. Under these assumptions,
the weak law of large numbers asserts that X̄n = n−1�n

i=1Xi
p−→µ and the central limit

theorem says that Zn =
√
n(X̄n − µ)/σ

d−→N(0, 1).
The extension of the above results to the case of sequences of random vectors in �p

(random p-vectors) is straightforward: In the definition of convergence in probability let Yn

1The general definition of convergence in probability refers to convergence to a random variable X and
essentially results by replacing c with X in the definition. Nevertheless, the only concept of convergence in
probability used in the current notes is convergence to a constant.
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be a random p-vector, c ∈ �p and define |Yn − c| as a distance metric in �p (for exam-
ple, the Euclidean distance). Similarly, for the weak law of large numbers and the central
limit theorem assume that X1, . . . , Xn are independent and identically distributed random
p-vectors with mean µ and variance Σ with finite entries. Then X̄n = n−1�n

i=1Xi
p−→µ and

√
n(X̄n − µ)

d−→Np(0,Σ).
Finally, two intuitive but powerful results are presented, which are widely used for the

development of asymptotic arguments.

Theorem 2.2. (Continuous mapping) Let g : �p → �k
be continuous at every point of a

set C such that P (Y ∈ C) = 1.

i) If Yn
d−→Y , then g(Yn)

d−→ g(Y );

ii) If Yn
p−→ c, then g(Yn)

p−→ g(c).

Example 2.1. From the central limit theorem Zn =
√
n(X̄n − µ)/σ

d−→N(0, 1). Then, by

the continuous-mapping theorem exp(Zn)
d−→U , where a simple change of variable gives that

U has a log-Normal distribution with density

1

u
√
2π

exp

�
−(log u)2

2

�
, u > 0 .

Lemma 2.1. (Slutzky) Let Xn, X and Yn be random variables. If Xn
d−→X and Yn

p−→ c,
c ∈ � then

i) Xn + Yn
d−→X + c;

ii) YnXn
d−→ cX;

iii) Xn/Yn
d−→X/c, if c �= 0.

Slutzky’s lemma says that, if Yn
p−→ c then variation in Yn can be omitted when examining

the limiting distributions of Xn + Yn, YnXn or Xn/Yn. The result also extends to the case
where Xn is a sequence of random p-vectors converging in distribution to a random p-vector
X and Yn is a sequence of random matrices which converges in probability (entry-wise) to a

fixed matrix C of appropriate dimension; then YnXn
d−→CX.

Example 2.2. (t-test for the mean) Consider observations on independent and identically
distributed random variables X1, X2, . . . , Xn from a Normal population with unknown mean
µ and unknown variance σ2. Interest is on testing the null hypothesis H0 : µ = µ0. A
test statistic for this null hypothesis is Tn =

√
n(X̄n − µ0)/σ̂n (t-statistic), where σ̂2

n =
(n − 1)−1�n

i=1(Xi − X̄n)2 is the sample variance. Large absolute values of the statistic
indicate departures from the null hypothesis. To formally perform the test we need to know
the distribution of the test statistic, at least asymptotically.

By the weak law of large numbers n−1�n
i=1X

2
i

p−→E(X2
1 ) and X̄n

p−→µ, and hence by

the continuous-mapping theorem X̄2
n

p−→µ2. Another application of the continuous-mapping
theorem gives

σ̂2
n =

n

n− 1

�
1

n

n�

i=1

X2
i − X̄2

n

�
p−→ 1 ·

�
E(X2

1 )− µ2
�
= σ2 ,
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and thus σ̂n
p−→σ. Under the null hypothesis, Xi ∼ N(µ0,σ2) and so by the central limit

theorem
√
n(X̄n−µ0)

d−→Y with Y ∼ N(0,σ2). Finally, Slutzky’s lemma gives that
√
n(X̄n−

µ0)/σ̂n
d−→Y/σ and so Tn

d−→N(0, 1). Hence, Tn is an approximate pivot and p-values can
be calculated based on its asymptotic normality.

Note that, in the present set up it is known that the exact sampling distribution of Tn is
the t distribution with n− 1 degrees of freedom.

For brevity, in what follows, a sequence {a1, a2, . . .} will be often denoted simply as {an}.

2.2.2 Stochastic order symbols

The stochastic order symbols Op and op are the most commonly used symbols for describing
the asymptotic order of random quantities and are defined as follows:

Definition 2.3. Consider a sequence of random variables {Xn} and a sequence of constants

{an}. We write Xn = op(an) if Xn/an
p−→ 0.

Definition 2.4. Consider a sequence of random variables {Xn} and a sequence of constants
{an}. We write Xn = Op(an) if for every � > 0 there exists K(�) > 0 and n0(�) such that,
for all n > n0(�),

P

�����
Xn

an

���� ≤ K(�)

�
> 1− � .

The statement Xn = Op(1) is equivalent to saying that {Xn} is bounded in probability. If

Xn
d−→X, where X has a distribution not depending on n, then Xn = Op(1). The converse

is not generally true, but is almost true; by a result called Prohorov’s theorem, if Xn = Op(1)

then there is a subsequence {Xn1 , Xn2 , . . .} with Xnj

d−→X as j → ∞, for some X.
The above definitions extend to the case of sequences of random p-vectors, by under-

standing Xn = op(an) as if ||Xn|| = op(an) and Xn = Op(an) as if ||Xn|| = Op(an), where ||.||
denotes some norm in �p. (for definitions and examples on the various types of stochastic
convergence the reader is referred to van der Vaart, 1998, Chapter 2).

These symbols first appeared in Mann and Wald (1943) among several other symbols
denoting different kinds of stochastic relationships, and they are generalizations of their
deterministic counterparts o(.) and O(.) (usually referred to as the Landau symbols).

Definition 2.5. Consider two sequences of real constants {an} and {bn}. We write bn = o(an)
if limn→∞ |bn/an| = 0.

Definition 2.6. Consider two sequences of real constants {an} and {bn}. We write bn =
O(an) if there exists � > 0 and positive integer N(�) such that

if n ≥ N(�) then |bn| < �|an|

or, alternatively, lim supn→∞ |bn|/|an| < ∞.

By the above definitions, for any real constant c, Op(an), op(an), O(an), o(an) are equiv-
alent to canOp(1), canop(1), canO(1), cano(1), respectively. Also, while Xn = Op(nc) implies
Xn = Op(nc+1), Xn = Op(nc+1) does not necessarily mean that Xn = Op(nc), and the same
is true when Op is replaced with either O or o or op. So, in expressions like Xn = op(an) the
use of the equality symbol is a slight abuse of notation. However, its use is convenient and
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it denotes the assignment of the property in the right hand side to the quantities of the left
hand side.

Some of the properties of stochastic and deterministic order symbols are given below
and they are used without comment throughout the notes. If a, b are real numbers and
k = max{a, b} then

Products Sums
o(na)o(nb) = o(na+b) o(na) + o(nb) = o(nk)

O(na)O(nb) = O(na+b) O(na) +O(nb) = O(nk)
O(na)o(nb) = o(na+b) O(na) + o(nb) = O(nk)

op(na)op(nb) = op(na+b) op(na) + op(nb) = op(nk)
Op(na)Op(nb) = Op(na+b) Op(na) +Op(nb) = Op(nk)
Op(na)op(nb) = op(na+b) Op(na) + op(nb) = Op(nk)
op(na)o(nb) = op(na+b) Compositions
Op(na)o(nb) = op(na+b) Op(O(na)) = Op(na)
O(na)op(nb) = op(na+b) o(Op(na)) = op(na)
O(na)Op(nb) = Op(na+b) op(Op(na)) = op(na)

The compositions above represent the effect of a linear function f(x) on a quantity of
known stochastic or deterministic order. For example, the equivalence o(Op(na)) = op(na)
is interpreted as if f(x) = o(x) and Xn = Op(na), then f(Xn) = op(na). Lastly, we men-
tion without proof a useful result that describes when an Op quantity is op and gives the
appropriate order for the convergence in probability.

Theorem 2.3. (A connection between Op and op) If Xn = Op(n−a) with a > 0 then

Xn = op(n−a+t), for every t > 0.

The above result is used in asymptotic expansions to formally justify the omission of
lower order terms, ensuring that under repeated sampling they converge in probability to
zero faster than the included terms.

A complete treatment of stochastic order symbols and illustrative examples of their use
is given in Bishop et al. (1975, Section 14.4).

2.3 Moments, cumulants and their generating functions

2.3.1 The moment generating function

Let Y be a random variable with density fY (y) and let µr = E(Y r) denote the rth moment
of Y and µ̄r = E {(Y − µ)r} the rth central moment of Y (moment about the mean), where
µ = µ1.

All moments of Y can be derived from the moment generating function of Y ,

MY (t) = E {exp(tY )} , t ∈ � .

If the moment generating function of Y exists (i.e. if MY (t) < ∞ for |t| < t0, for some t0 > 0)
then

i) Y has finite moments of any order, and
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ii) the moment generating function may be expanded as a power series with some conver-
gence range R ≥ t0:

MY (t) = 1 + tµ1 +
t2

2!
µ2 +

t3

3!
µ3 +

t4

4!
µ4 + . . . .

Then, differentiating the above expression with respect to t, the rth moment of Y is

µr =
dr

dtr
MY (t)

����
t=0

(r = 1, 2, . . .) ,

and the rth central moment of Y is

µ̄r =
dr

dtr
MY−µ(t)

����
t=0

(r = 1, 2, . . .) .

There is a correspondence between convergence in distribution of a sequence of random
variables and pointwise convergence of the sequence of their moment generating functions.
Specifically, if {Yn} is a sequence of random variables with corresponding sequence of mo-
ment generating functions {MYn(t)}, and if Y is a random variable with moment generating
function MY (t), then

i) if Yn
d−→Y and Mn(t) < c < ∞ for |t| < t0, t0 > 0, with c a constant not depending on

n, then
lim
n→∞

MYn(t) = MY (t) , |t| < t0 ;

ii) if limn→∞MYn(t) = MY (t), |t| < t0, t0 > 0 then Yn
d−→Y , with Y a random variable

with moment generating function MY (t);

iii) under the same assumptions as either in i) or in ii), the rth moment of Yn converges to
the rth moment of Y (r = 1, 2, . . .).

Example 2.3. (Normal distribution) Consider a normally distributed random variable
Y with mean µ and variance σ2. The moment generating function is

MY (t) = E {exp(tY )}

=
1√
2πσ

� ∞

−∞
exp

�
ty − (y − µ)2

2σ2

�
dy

= exp

�
−µ2 + (tσ2 + µ)2

2σ2

�
1√
2πσ

� ∞

−∞
exp

�
−y2 − 2(tσ2 + µ)y + (tσ2 + µ)2

2σ2

�
dy

= exp

�
tµ+

t2σ2

2

�
.

Hence, the first four moments are

µ1 = µ ,

µ2 = µ2 + σ2 ,

µ3 = µ3 + 3µσ2 ,

µ4 = µ3 + 6µ2σ2 + 3σ4 ,

12
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and the first four central moments are

µ̄1 = 0 ,

µ̄2 = σ2 ,

µ̄3 = 0 ,

µ̄4 = 3σ4 .

Actually, all the odd numbered central moments of a normally distributed random variable
are 0.

Example 2.4. (log-Normal distribution) Consider a random variable X that has the
log-Normal distribution with parameters µ and σ2, that is

fX(x) =
1

x
√
2πσ

exp

�
−(log x− µ)2

2σ2

�
, x > 0 .

Noting that X = exp(Y ) where Y ∼ N(µ,σ2), the rth moment of X is

µr = E (Xr) = E {exp(rY )} = exp

�
rµ+

r2σ2

2

�
(r = 1, 2, . . .) .

Hence, all the moments of X are well-defined. Nevertheless, the moment generating function
of X does not exist; if t > 0,

E {exp(tX)} = E [exp {t exp(Y )}]

=

� +∞

−∞

1√
2πσ

exp

�
t exp(y)− (y − µ)2

2σ2

�
dy

≥
� +∞

−∞

1√
2πσ

exp

�
t

�
1 + y +

y2

2
+

y3

6

�
− (y − µ)2

2σ2

�
dy = ∞ ,

because the term in the exponent is a third-degree polynomial in y for which the y3 term has
positive coefficient.

2.3.2 The cumulant generating function

Let MY (t) be finite for |t| < t0. The cumulant generating function of Y is defined as

KY (t) = logMY (t) , |t| < t0 .

Like MY (t), KY (t) determines the distribution of Y . The function KY (t) can also be ex-
panded in power series, with range of convergence R ≥ t0, as

KY (t) = tκ1 +
t2

2!
κ2 +

t3

3!
κ3 +

t4

4!
κ4 + . . . .

The coefficient κr of tr/r! is called the rth cumulant (or cumulant of order r) of Y . Clearly,

κr ≡ κr(Y ) =
dr

dtr
KY (t)

����
t=0

(r = 1, 2, . . .) .

13
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Example 2.5. (One-parameter natural exponential families) Consider a random vari-
able Y that has a density (or probability mass) function of the form

fY (y; θ) = exp {yθ − k(θ) + a(y)} , (2.7)

where y take values in C ⊆ �, θ is a scalar parameter, k : � → � and a : C → �. We say
that fY (y) is the density for a natural exponential family with natural parameter θ. Because
fY (y; θ) is a density function

�

C
exp {yθ − k(θ) + a(y)} dy = 1 , (2.8)

where the integral is replaced by summation over all y ∈ C when fY (y) is a probability mass
function. By (2.8), the moment generating function of Y is

MY (y) =

�

C
exp {yt+ yθ − k(θ) + a(y)} dy

= exp {k(θ + t)− k(θ)}
�

C
exp {y(θ + t)− k(θ + t) + a(y)} dy

= exp {k(θ + t)− k(θ)} .

The above result is unchanged when fY (y) is a probability mass function.
Consequently, the cumulant generating function has the form

KY (t) = k(θ + t)− k(θ) ,

and hence the rth cumulant of Y is κr = drk(θ)/dθr (r = 1, 2, . . .). This is the reason that
k(θ) is often called the cumulant transform of the family.

Some well-known one-parameter natural exponential families are given in Table 2.1 along
with their density or probability mass functions, natural parameters and cumulant transforms.

For example, in the case of a N(µ,σ2) random variable with σ2 fixed, direct differentiation
of the cumulant transform with respect to θ and substitution of θ by µ/σ2 gives κ1 = µ,
κ2 = σ2 and κr = 0 (r = 3, 4, . . .). Importantly, cumulants of order higher than two are all
zero if, and only if, Y has the normal distribution. In the case of a Poisson random variable,
all cumulants are equal to µ.

Location and scale changes to the range of Y

Consider a new random variable Z = α+ βY for real constants α and β. Then

Mα+βY (t) = E [exp{t(α+ βY )}] = exp(αt)MY (βt) .

Thus, Kα+βY (t) = αt+KY (βt), which reveals two useful properties of the cumulants:

i) Cumulants of order 2 and higher are invariant to location changes, that is

κ1(α+ Y ) = α+ κ1(Y ) ,

κr(α+ Y ) = κr(Y ) (r = 2, 3, . . .) .

ii) By the definition of the rth cumulant of Y as the rth derivative of KY (t) at t = 0,

κr(βY ) =
dr

dtr
KY (βt)

����
t=0

= βrκr(Y ) (r = 1, 2, . . .) .

That is, all the cumulants of Y are affected by a scale change (β �= 1) and the greater
the order of the cumulant the greater the effect of a change in scale is.

14
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Table 2.1: Some well-known distributions from the one-parameter exponential family.

Normal Poisson Binomial Gamma
N(µ,σ2) P (µ) B(n, p) G(ν,φ)

Parameter µ ∈ � µ > 0 p ∈ [0, 1] φ > 0
σ2 > 0 fixed n ∈ {1, 2, . . .} fixed ν > 0 fixed

Range of y y ∈ � y ∈ {0, 1, 2, . . .} y ∈ {0, 1, . . . , n} y > 0

fY (y)
1√
2πσ

exp

�
− (y − µ)2

2σ2

�
exp(−µ)µy

y!

�
n

y

�
py(1− p)n−y yν−1 exp(−y/φ)

φνΓ(ν)

θ
µ

σ2
logµ log

�
p

1− p

�
− 1

φ

k(θ)
θ2σ2

2
exp(θ) m log {1 + exp(θ)} −ν log(−θ)

Cumulants in terms of moments

The expression of cumulants in terms of moments can be explicitly done using expansion
(2.5). For example, for the first four cumulants, ignoring powers of t greater than four, we
get

KY (t) = log

�
1 +

�
tµ1 +

t2

2
µ2 +

t3

3!
µ3 +

t4

4!
µ4 +O(t5)

��

=

�
tµ1 +

t2

2
µ2 +

t3

3
µ3 +

t4

4
µ4

�
− 1

2!

�
tµ1 +

t2

2
µ2 +

t3

3
µ3

�2

+
1

3!

�
tµ1 +

t2

2
µ2

�3

− 1

4!
t4µ4

1 +O
�
t5
�
.

Expanding the latter expression, moving terms of order O(t5) to the remainder and collecting
terms in increasing powers of t gives:

KY (t) = tµ1+
t2

2

�
µ2 − µ2

1

�
+
t3

3!

�
µ3 − 3µ1µ2 + 2µ3

1

�
+
t4

4!

�
µ4 − 3µ2

2 − 4µ1µ3 + 12µ2
1µ2 − 6µ4

1

�
+O

�
t5
�
.

Thus,

κ1 = µ1 , (2.9)

κ2 = µ2 − µ2
1 = µ̄2 ,

κ3 = µ3 − 3µ1µ2 + 2µ3
1 = µ̄3 ,

κ4 = µ4 − 3µ2
2 − 4µ1µ3 + 12µ2

1µ2 − 6µ4
1 = µ̄4 − 3µ̄2

2 .

The expressions of cumulants in terms of central moments, above, can be obtained in two
alternative ways:

i) Note that KY (t) = tµ+ logMY−µ(t) and expand logMY−µ(t).
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ii) Express the rth moment in terms of µ1 and central moments by noting that MY (t) =
exp(tµ)MY−µ(t). Thus,

µr =
dr

dtr
{exp(tµ)MY−µ(t)}

����
t=0

with
dr

dtr
MY−µ(t)

����
t=0

= µ̄r (r = 1, 2, . . .) .

Note that, expressions (2.9) suggest that any cumulant of order 2 and higher can be
expressed solely in terms of central moments. That is true and is a direct consequence of the
invariance of cumulants of order 2 or higher to location changes of the random variable.

Standardized cumulants

It is useful to define the standardized cumulants

ρr =
κr

κr/22

, r = 3, 4, . . . ,

which are invariant under scale (and inherently location) changes to the range of Y . The
first four cumulants are measures of location, variability, skewness (asymmetry) and kurtosis,
respectively. The quantities ρ3 and ρ4 are the well-known dimensionless indices of skewness
and kurtosis.

2.3.3 Generating functions for sums

Let Sn =
�n

i=1 Yi where Y1, . . . , Yn are n independent random variables. The density of Sn

is given by

fSn(s) =

�
fY1(y1) . . . fYn−1(yn−1)fYn(s− yn−1 − . . .− y1)dy1 . . . dyn−1 ,

with a corresponding sum for the mass function, in the discrete case. Except for small values
of n, however, the above expression is of little or no use either for analytical or numerical
purposes.

In most cases where sums of independent random variables are involved, it turns out that
the calculation of the above integral (or sum) is unnecessary for accessing features of the
distribution of the sum.

For the moment generating functions of Sn,

MSn(t) = E

�
exp

�
t

n�

i=1

Yi

��
=

n�

i=1

E {exp(tYi)} =
n�

i=1

MYi(t) .

Note that, if Y1, . . . , Yn are also identically distributed copies of a random variable Y , then
MSn(t) = {MY (t)}n. In that case the moments of Sn can be obtained by the binomial

theorem. Specifically,

MSn(t) =

�
1 +

�
tµ1 +

t2

2!
µ2 +

t3

3!
µ3 +

t4

4!
µ4 + . . .

��n

=
n�

k=0

�
n

k

�� ∞�

r=1

tr

r!
µr

�k

.

The first N moments of Sn can now be obtained using similar arguments to the ones that
were used earlier for expressing the cumulants in terms of moments (i.e. consider only the
relevant terms of the infinite series, expand and then match the coefficients of tr/r!).
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For the cumulant generating function,

KSn(t) = logMSn(t) =
n�

i=1

KYi(t) .

Thus, by the definition of a cumulant, κr(Sn) =
�n

i=1 κr(Yi), and if Y1, . . . , Yn are identically
distributed, κr(Sn) = nκr(Y ) (r = 1, 2, . . .). The simplicity of the latter expressions motivate
the use of cumulants instead of moments when dealing with sums of independent random
variables.

Example 2.6. (Sum of i.i.d exponential random variables with mean φ) Consider
independent and identically distributed random variables X1, . . . Xn from an exponential
distribution with density

1

φ
exp

�
−x

φ

�
, x > 0 ,φ > 0 .

Interest is on finding the distribution of Yn =
�n

i=1Xi by using the properties of the cumulant
generating function. The moment generating function of Xi is

MXi(t) =
1

φ

� ∞

0
exp

�
tx− x

φ

�

=
1

1− tφ

1− tφ

φ

� ∞

0
exp

�
−x(1− tφ)

φ

�
=

1

1− tφ
.

Hence, by the properties of the cumulant generating function KYn(t) = −n log(1− tφ) which
is the cumulant generating function of G(n,φ) (to see this use the results in Table 2.1 to
derive the cumulant generating function for the Gamma distribution).

Note that the mean and variance of Yn are µ = nφ and σ2 = nφ2. Thus, according to the

central limit theorem, Zn = (Yn−nφ)/(
√
nφ)

d−→N(0, 1). This can also be verified by direct
use the of the cumulant generating function. Because Zn results by changing the location
and scale of Yn,

KZn(t) = −t
√
n− n log

�
1− t√

n

�
.

Using (2.6), we can expand log(1− t
√
n) to get

KZn(t) =
t2

2
+

t3

3n1/2
+

t4

4n
+ . . . =

t2

2
+O

�
n−1/2

�
.

Hence, limn→∞KZn(t) = t2/2 which is the cumulant generating function of a N(0, 1) random
variable.

2.3.4 Multivariate extensions

The above definitions and results can be extended to the case of a random d-vector Y =
(Y1, . . . , Yd), d > 1. A generic joint moment of order r of Y is given by

µi1,...,ir = E(Yi1 . . . Yir) (i1, . . . , ir = 1, . . . , d) ,

and the generic joint central moment of order r is

µ̄i1,...,ir = E{(Yi1 − µi1) . . . (Yir − µir)} (i1, . . . , ir = 1, . . . , d) ,
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The moment generating function of Y is defined as

MY (t) = E{exp(t · Y )} = E{exp(t1Y1 + . . .+ tdYd)} , t = (t1, . . . , td) ∈ �d ,

and is said to exist if MY (t) is finite for ||t|| < to, t0 > 0. In that case the moment generating
function can be expanded using (2.3) into a multivariate power series with some convergence
radius R ≥ t0 and then as in the univariate case

µi1,...,ir =
∂rMY (t)

∂ti1 . . . ∂tir

����
t=0

(i1, . . . , ir = 1, . . . , d) .

If MY (t) exists, the cumulant generating function is again defined as KY (y) = logMY (t)
and it can be expanded in multivariate power series in a neighbourhood of the origin. The
coefficients of this expansion define the cumulants of Y . The generic joint cumulant of order
r is

κi1,...,ir =
∂rKY (t)

∂ti1 . . . ∂tir

����
t=0

(i1, . . . , ir = 1, . . . , d) .

Given that the moment generating function exists, both MY (t) and KY (t) characterize
the, multivariate in this case, distribution of Y . Furthermore, note that the notation we
used for moments and cumulants in the multivariate case is not consistent with the notation
in the univariate case. Nevertheless, the multivariate notation will be rather useful in later
chapters.

The relations in (2.9) can be extended to refer to joint cumulants, joint moments and
joint central moments. In particular, for i, j, k, l = 1, . . . , d,

κi,j = µi,j − µiµj = µ̄i,j ,

κi,j,k = µi,j,k − µiµj,k[3] + 2µiµjµk = µ̄i,j,k , (2.10)

κi,j,k,l = µi,j,k,l − µiµj,k,l[4]− µi.jµk,l[3] + 2µiµjµk,l[6]− 6µiµjµkµl = µ̄i,j,k,l − µ̄i,jµ̄k,l[3] ,

where the symbol [c] denotes the sum of all c distinct terms obtained by permutations of
indices between the factors involved in the product. For example,

µiµj,k,l[4] = µiµj,k,l + µjµi,k,l + µkµi,j,l + µlµi,j,k .

Example 2.7. (Exponential families) Consider a random q-vector Y with density (or
probability mass) function of the form

exp

�
d�

i=1

si(y)θi(β)− k(θ(β)) + a(y)

�
, β ∈ B ⊆ �p , (2.11)

where s(y) = (s1(y), . . . , sd(y)) is a d-vector of real-valued functions of y called the natural

statistics, θ(β) = (θ1(β), . . . , θd(β)) is a d-vector of real-valued functions of β called the
natural parameters, and a(.) and k(.) are real-valued functions of d-vectors and q-vectors,
respectively. Note that the value of d can be further reduced if either s(y) or θ(β) satisfies
a linear constraint, so we assume that d is as small is possible. If dim(B) = d then the
family is called full while if dim(B) < d the family is called curved. The case dim(B) > d
is not interesting, as then the parameter β is not identifiable. The one-parameter natural
exponential family results for d = q = p = 1 and s(y) = y.
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For simplicity, consider the case of discrete Y . Then, for some x = (x1, . . . , xd), if Tx =
{y : s1(y) = x1, . . . , sd(y) = xd},

P (s1(Y ) = x1, . . . , sd(Y ) = xd) =
�

y∈Tx

exp

�
d�

i=1

si(y)θi − k(θ) + a(y)

�

= exp

�
d�

i=1

xiθi − k(θ) + b(x)

�
,

where b(x) = log
�

y∈Tx
exp {a(y)}. This is again of the form (2.11) with natural statistics

xi and and natural parameters θi (i = 1, . . . , d), respectively. The above expression remains
unchanged for continuous Y . Now, the same argument as in Example 2.5, but now in d-
dimensions gives K(t) = k(θ + t)− k(θ). Thus,

κi1,...,ir(S) =
∂rk(θ)

∂θi1 . . . ∂θir
(i1, . . . , ir = 1, . . . , d) .

In this way, we can access features of the joint distribution of the natural statistics without
having to explicitly derive it. For example, the Beta density

f(y;α,β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1 0 < y < 1 ,α > 0 ,β > 0 ,

is of the exponential form with θ1 = α, θ2 = β, s1(y) = log y, s2(y) = log(1 − y) and
k(θ) = logΓ(θ1)+logΓ(θ1)− logΓ(θ1+θ2). Thus, E(log Y ) = ∂k(θ)/∂θ1 = ψ(θ1)−ψ(θ1+θ2)
and

cov {log Y, log(1− Y )} =
∂2k(θ)

∂θ1∂θ2
= −ψ�(θ1 + θ2) ,

where ψ(z) = dlogΓ(z)/dz and ψ�(z) = dψ(z)/dz are the digamma and trigamma functions,
respectively.

For a Normal density with unknown mean µ and variance σ2, s1(y) = y, s2(y) = −y2/2,
θ1 = µ/σ2, θ2 = 1/σ2 and k(θ) = − log θ2/2 + θ21/(2θ2). Thus, for example,

cov

�
Y,−Y 2

2

�
=

∂2k(θ)

∂θ1∂θ2
= −θ1

θ22
= −µσ2 .

2.4 Asymptotic expansions and their inversion

2.4.1 The general form of an asymptotic expansion

Assume that interest lies in a sequence of functions f1(x), f2(x), . . . and that the general term
fn(x) of this sequence can be written as

fn(x) = γ0(x)c0,n + γ1(x)c1,n + γ2(x)c2,n + . . .+ γk(x)ck,n +O (ck+1,n) , (2.12)

where {c0,n, c1,n, . . .} is a sequence of real constants, such as {1, n−1/2, n−1, . . .} or {1, n−1, n−2, . . .},
and {γ0(x), . . . γk(x)} is a sequence of functions of x with terms not depending on n. Note that
an essential condition for (2.12) to be valid, is that cr+1,n = o(cr,n) as n → ∞ (r = 1, 2, . . .),
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because otherwise some terms in the sum might have to be absorbed in the remainder
O (ck+1,n). Expression (2.12) for fn(x) is called an asymptotic expansion for fn(x).

Another type of expansion is the stochastic asymptotic expansion. For a sequence of
random variables {Yn}, a stochastic asymptotic expansion for Yn is expressed as

Yn = X0c0,n +X1c1,n +X2c2,n + . . .+Xkck,n +Op (ck+1,n) , (2.13)

where {c0,n, c1,n, . . .} are as before and {X0, X1, . . .} are random variables having distributions
not depending on n.

Example 2.8. (Haldane-Anscombe correction) Consider an observation y from a bi-
nomial random variable Y ∼ B(n, p). The obvious estimator (which is also the maximum
likelihood estimator) of the log-odds β = log{p/(1−p)} is β̂ = log{Y/(n−Y )}. Nevertheless,
β̂ has the disadvantage that it is infinite if y = 0 or y = n is observed. One possible way to
overcome this is to define the new estimator (Haldane, 1955; Anscombe, 1956)

β̃a = log
Y + a

n− Y + a
, a ∈ � , (2.14)

essentially adding a and 2a to y and n, respectively, and then replacing y and n in the
expression for β̂. An appropriate value for a can be chosen so that the expectation of β̃a is
as close as possible to β.

Firstly, note that Y can be expressed as the sum of n independent Bernoulli random
variables all with probability of success p and that E(Y ) = np, var(Y ) = np(1 − p) and
E{(Y − np)3} = np(1 − p)(1 − 2p). Hence, if U = (Y − np)/

√
n then by the central limit

theorem U/
�

p(1− p)
d−→N(0, 1) which implies U = Op (1). Replacing Y = np + U

√
n in

(2.14) and subtracting β from both sides, simple algebra gives

β̃a − β = log

�
1 +

�
U√
np

+
a

np

��
− log

�
1−

�
U√
nq

− a

nq

��
,

where q = 1−p. The first and the second terms of the right hand side of the above expression
can be expanded using to (2.5) and (2.6), respectively, up to order Op

�
n−2

�
. This gives the

stochastic asymptotic expansion

β̃a − β =
U√
np

+
a

np
− U2

2np2
− aU

n3/2p2
+

U3

3n3/2p3

+
U√
nq

− a

nq
+

U2

2nq2
− aU

n3/2q2
+

U3

3n3/2q3
+Op

�
n−2

�
.

Taking expectations in both sides and noting that E(U) = 0, E(U2) = pq and E(U3) =
n−1/2pq(1− 2p) gives the asymptotic expansion

E(β̃a − β) =
(1− 2p)(2a− 1)

2npq
+O(n−2) .

Thus for a = 1/2, β̃1/2 has bias of order O(n−2), having the additional property of being
finite for every value of y.

20



2.4. Asymptotic expansions and their inversion
ST414: Asymptotic Statistics

I. Kosmidis, Autumn 2009-2010

In this example the asymptotic orders were apparent because powers of n were explicitly
involved in each term. This need not be the case in general, and the explicit involvement on
n might be dropped, as done in the next chapter, for the sake of convenience; that is we will
be using random variables with distributions depending on n and moments and cumulants of
those. Furthermore, the expansions given in the previous example do not necessarily refer to
convergent series because (2.5) and (2.6) converge only for for −1 ≤ x < 1 and −1 < x ≤ 1,
respectively. In general, taking more terms in an asymptotic expansion and keeping n finite
will not necessarily improve the approximation.

2.4.2 Inversion of asymptotic series

In most cases, while we are interested in an asymptotic expansion for a quantity x, the
asymptotic expansion of a function f(x) is much more convenient to obtain. Hence, a formal
device is required for inverting the expansion for f(x) so as to obtain an expansion for x.

For the sake of simplicity, let y = f(x), x ∈ � be the generic component of a sequence of
real smooth functions which admit a power series expansion

y = a0 + a1x+ a2x
2 + a3x

3 + . . . ,

where ar = O(1), r = 0, 1, . . . and x = O(n−t), t > 0. This is an asymptotic expansion
for y with γr(x) = arnrtxr and cr,n = n−rt in (2.12) (r = 0, . . . , n). Define a new variable
z = (y − a0)/a1 (a1 �= 0). Then the power series expansion can be written as

z = x+ b2x
2 + b3x

3 + . . . , (2.15)

where bi = ai/a1, i = 2, 3, . . ..
Note that, as a first approximation x = z+O

�
n−2t

�
. Because f �(0) = a1 �= 0, the function

z = (f(x)− a0)/a1 can be inverted in a neighbourhood of x = 0, with inverse x = g(z). We
wish to express g(z), in a neighbourhood of z = 0, as a power series in the form

x = z + d2z
2 + d3z

3 + . . . ,

with d2 and d3 to be determined as functions of b2 and b3 ignoring terms of order O
�
n−4t

�
.

This can be done by a procedure called the iterative substitution method. As the name
suggests, the iterative substitution method proceeds by writing (2.15) as

x = z − b2x
2 − b3x

3 + . . . , (2.16)

and then iteratively substituting all instances of x on the right hand side, according to its
expression in (2.16), until the only terms that cannot be neglected are functions only of z.
The first substitution gives

x = z − b2(z − b2x
2)2 − b3z

3 +O
�
n−4t

�

= z − b2z
2 + 2b22x

2z − b3z
3 +O

�
n−4t

�
.

A second step is required, where x2 is substituted by z2 on the right hand side of the above
expression. This gives

x = z − b2z
2 + 2b22z

3 − b3z
3 +O

�
n−4t

�

= z − b2z
2 + (2b22 − b3)z

3 +O
�
n−4t

�
,

which is the desired form with d2 = −b2 and d3 = 2b22 − b3.
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Chapter 3

Likelihood-based asymptotics

Maximum likelihood is one of the central principles for estimation in Statistics
mainly because of the neat asymptotic properties of the maximum likelihood es-
timator (consistency, asymptotic normality and asymptotic efficiency). In this
chapter we briefly show how these properties result using the basic tools of the
previous chapter. Asymptotic expansions for the moments of the maximum like-
lihood estimator are derived whose form suggests the possibility of simple correc-
tions to the maximum likelihood estimator. It is also shown how the approximate
pivots of Chapter 1 result. Special attention is paid to exponential family models.
For simplicity, the derivations are made only for one-parameter models but the
extension of some of the results to the case of multidimensional parameters is also
given.

3.1 Maximum likelihood estimation

Suppose that y is the observed value of a random n-vector Y = (Y1, . . . , Yn) from a parametric
family of distributions with density fY (y;β), where the parameter β is generally multidimen-
sional, β = (β1, . . . ,βp) ∈ B ⊆ �p, for some p ≥ 1. The likelihood function is defined
by

L(β; y) = fY (y;β) ,

and is viewed as a function of β for the fixed data y. The maximum likelihood estimate is
the value of β for which L(β; y) is maximized or, more conveniently, where the log-likelihood

l(β; y) = logL(β; y) is maximized.
In most cases l(β; y) is differentiable and hence the maximum can be located by solving

the likelihood equations,
∇l(β; y) = 0 ,

where ∇l(β; y) = (∂l(β; y)/∂β1, . . . , ∂l(β; y)/∂βp)T and then checking negative definiteness
of the matrix of second derivatives evaluated at the solution to establish that a maximum
has been located.

We mainly focus on the case where y1, . . . , yn are observations on independent and
identically distributed random variables Y1, . . . , Yn but the following results extend far be-
yond this case (using appropriate extensions of the definitions and theorems of the pre-
vious chapter). In the case of independent and identically distributed random variables,
l(β; y) =

�n
i=1 log f(yi;β), where f(yi;β) is the density of Yi.
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3.2 Log-likelihood related quantities

3.2.1 Log-likelihood derivatives and Bartlett relations

The building blocks of asymptotic arguments in likelihood theory are the log-likelihood deriva-
tives and moments and cumulants of their products. In the current section we introduce
notation for the aforementioned quantities in the case of models with a scalar parameter β.
Assume that the log-likelihood is infinitely differentiable and denote the rth log-likelihood
derivative by

lr(β) ≡ lr(β;Y ) =
dl(β;Y )

dβ
(r = 1, 2, . . .) .

We call l1(β) the efficient score function (or simply score function). Furthermore, denote by

νr(β) = Eβ{lr(β)} ,
νr,s(β) = Eβ{lr(β)ls(β)} ,
νr,s,t(β) = Eβ{lr(β)ls(β)lt(β)} ,

...

the joint null moments of the log-likelihood derivatives (or more precisely, the joint null
moments of the random variable U = (l1, l2, . . . , ld), for appropriate d > 1), where the word
null is used to indicate that the operations of differentiation and expectation take place at
the same value β of the parameter.

By definition, �

Y
fY (y;β)dy = 1 , (3.1)

and hence, assuming that the parameter space does not depend on the sample space, we can
differentiate both sides of (3.1) with respect to β and exchange the order of differentiation
and integration over the sample space Y (with integration replaced by summation in the case
of discrete random variables). Hence,

0 =
d

dβ

�

Y
fY (y;β)dy

=

�

Y

dfY (y;β)

dβ

1

fY (y;β)
fY (y;β)dy

=

�

Y

dlog fY (y;β)

dβ
fY (y;β)dy = Eβ{l1(β)} = ν1(β) .

Further differentiation gives

ν1,1(β) + ν2(β) = 0 ,
ν3(β) + 3ν2,1(β) + ν1,1,1(β) = 0 ,

ν4(β) + 3ν2,2(β) + 4ν1,3(β) + 6ν1,1,2(β) + ν1,1,1,1(β) = 0 ,
...

(3.2)

The above equations are called Bartlett relations (Bartlett, 1953, Section 2). There is a simple
rule for direct differentiation of moments of log-likelihood derivatives (Skovgaard, 1986).
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Theorem 3.1. (Skovgaard)

d

dβ
νr1,...,rd(β) =

d�

j=1

Eβ

�
lr1(β) . . . lrj+1(β) . . . lrd(β)

�
+ Eβ {lr1(β) . . . lrd(β)l1(β)} .

For example, dν1,3,6(β)/dβ = ν2,3,6(β) + ν1,4,6(β) + ν1,3,7(β) + ν1,1,3,6(β). Hence, using
Skovgaard’s theorem, each Bartlett relation is obtained by the previous one by direct dif-
ferentiation (exercise with the first three). Skovgaard’s theorem is also applicable for the
differentiation of joint null cumulants of log-likelihood derivatives.

The first identity in (3.2) is usually referred to as the information identity and shows
that the variance of the score function is equal to the expectation of minus the second log-
likelihood derivative. The name occurs because the quantity i(β) = ν1,1(β) is called the
expected (or Fisher) information matrix for β and the quantity j(β) = −l2(β) is called the
observed information for β.

3.2.2 Asymptotic orders

Below, it will be essential to be able to identify the asymptotic order of likelihood related
quantities in a systematic way. Firstly, note that lr(β) is the sum of n independent Op(1)
terms and hence lr(β) = Op(n) and νr(β) = O(n) (r = 1, 2, . . .). In particular for the score
function a more refined result can be obtained because ν1(β) = 0 and thus by the central

limit theorem l1(β)/
�

i(β)
d−→N(0, 1) resulting l1(β) = Op

�
n1/2

�
. Furthermore, all joint

null cumulants of log-likelihood derivatives will also be of order O(n). However, the order of
moments and central moments is not so straightforward to obtain.

Define the centered log-likelihood derivatives Hr(β) = lr(β) − νr(β) (r = 1, 2, . . .). A
similar argument as for the score function gives Hr(β) = Op

�
n1/2

�
. Furthermore, define the

joint null central moments as ν̄r,s(β) = Eβ{Hr(β)Hs(β)}, ν̄r,s,t(β) = Eβ{Hr(β)Hs(β)Ht(β)},
and so on. Then1,

ν̄r1,...,rd(β) =






O
�
nd/2

�
if d is even

O
�
n(d−1)/2

�
if d is odd

(r1, . . . , rd = 1, 2, . . .) . (3.3)

Example 3.1. Consider the joint null central moment ν̄r,s,t,u(β) = Eβ {Hr(β)Hs(β)Ht(β)Hu(β)}
(r, s, t, u = 1, 2, . . .). A direct application of the rule in (3.3) gives ν̄r,s,t,u(β) = O(n2). Assume
we want to discard any O (n) terms of ν̄r,s,t,u(β) keeping only the O

�
n2

�
terms. On the basis

of (2.10) we get

κr,s,t,u(β) = ν̄t,s,t,u(β)− ν̄r,s(β)ν̄t,u(β)− ν̄r,t(β)ν̄s,u(β)− ν̄r,u(β)ν̄s,t(β) ,

and because κr,s,t,u = O(n),

ν̄r,s,t,u(β) = ν̄r,s(β)ν̄t,u(β) + ν̄r,t(β)ν̄s,u(β) + ν̄r,u(β)ν̄s,t(β) +O(n) .

For simplicity, we temporarily omit the argument β of the functions in the expressions. Noting
that ν̄r,s = νr,s − νrνs (the covariance of lr and ls) gives

ν̄r,s,t,u = νr,sνt,u + νr,tνs,u + νr,uνs,t

− νr,sνtνu − νr,tνsνu − νr,uνsνt − νs,tνrνu − νs,uνrνt − νr,uνsνt

+ 3νrνsνtνu +O (n) .

1This result is a direct consequence of the exlog relations (see, for example, Barndorff-Nielsen and Cox
1989, section 5.4 and Pace and Salvan 1997, section 9.2.2).
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The above expression gives an evaluation of the central moment ν̄r,s,t,u(β) in terms of joint
null moments of orders up to 2, ignoring contributions of order O (n).

For example, noting that ν1 = 0, we get

ν̄1,1,1,r(β) = 3ν1,1(β)ν1,r(β) +O (n) (r = 1, 2, . . .) , (3.4)

ν̄1,1,r,r(β) = 2ν1,r(β)
2 + ν1,1(β){νr,r(β)− νr(β)

2}+O (n) (r = 2, 3, . . .) .

3.3 Properties of the maximum likelihood estimator

3.3.1 Consistency

Let β̂ be the maximum likelihood estimator of the parameter β based on a random sample
of size n and denote by β0 the true but unknown value of β. Then, under fairly general con-
ditions, it can be shown that β̂

p−→β0, that is β̂ is a consistent (or asymptotically consistent)
estimator. The result follows by the Jensen’s inequality (that is, for concave g : � → �,
E{g(X)} ≤ g{E(X)}) and the defining property of the maximum likelihood estimator. More
specifically, if Y is the sample space and β is any point of B, by Jensen’s inequality,

Eβ0 {l(β;Y )− l(β0;Y )} =

�

Y

�
log

fY (y;β)

fY (y;β0)

�
fY (y,β0)dy

≤ log

�

Y

fY (y;β)

fY (y;β0)
fY (y,β0)dy = 0 .

This implies Eβ0 {l(β;Y )} ≤ Eβ0 {l(β0;Y )} where the inequality is strict unless f(y;β)/f(y;β0) =
1 almost everywhere in Y. On the other hand, by definition, n−1l(β̂; y) ≥ n−1l(β; y) for any
β ∈ β. Heuristically, the two inequalities are incompatible unless β̂ converges to β0.

A rigorous proof of the consistency of the maximum likelihood estimator is given in Cox
and Hinkley (1974, Section 9.2) and is due to Wald (1949). The interested reader can also
see van der Vaart (1998, Section 5.2) for an alternative consistency proof in the more general

context of M -estimation. For our purposes, we shall merely note that because β̂
p−→β0,

β̂ − β0 = op(1).

3.3.2 Asymptotic normality

For simplicity, we only consider the case where β0 is scalar. Furthermore we assume that
the log-likelihood is twice continuously differentiable on a neighbourhood of β0 and that��d3 log f(yi;β)/dβ3

�� ≤ g(yi) uniformly for some β in the neighbourhood of β0, with Eβ0{g(Yi)} <
∞ (i = 1, . . . , n).

By Taylor’s theorem (Theorem 2.1), the first derivative of the log-likelihood can be written
as

0 = l1(β̂) = l1(β0) + (β̂ − β0)l2(α) ,

where α is between β̂ and β0. Thus, β̂ − β0 = −l1(β0)/l2(α). Multiplying and dividing by�
i(β0) gives

�
i(β0)(β̂ − β0) =

A(β0)C(β0)

B(β0)
, (3.5)
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where A(β) = l1(β)/
�
i(β), B(β) = −l2(β)/i(β) and C(β) = l2(β)/l2(α). By the central

limit theorem and the law of large numbers,

A(β0)
d−→N(0, 1) , (3.6)

B(β0)
p−→ 1 , (3.7)

respectively (write i(β) = ni∗(β) to see those, where i∗(β) is called the Fisher information
per observation and is independent of n). Now, by assumption the third derivative of the
log-likelihood is bounded and a simple Taylor expansion of l2(α) around β0 gives

����
l2(α)− l2(β0)

n

���� ≤ |α− β0|
�n

j=1 g(Yj)

n
. (3.8)

The second factor on the right hand side tends to some finite constant, while the first tends
to 0 in probability by the consistency of β̂ and because |α − β0| < |β̂ − β0|. Thus the left
hand side of (3.8) tends in probability to 0 and it follows that

C(β0) =
l2(α)− l2(β0)

n
·
�
l2(β0)

n

�−1

+ 1
p−→ 0 ·

�
− 1

i∗(β0)

�
+ 1 = 1 . (3.9)

By (3.6), (3.7) and (3.9), an application of Slutzky’s lemma to (3.5) gives that

�
i(β0)(β̂ − β0) ∼ N(0, 1) . (3.10)

Expression (3.10) implies that
√
n(β̂ − β0) = Op(1) and thus we can refine the statement

β̂ − β0 = op(1) to

β̂ − β0 = Op(n
−1/2) .

Furthermore, it can be shown that i(β0) can be replaced by either i(β̂), j(β0) or j(β̂) in (3.10)
without affecting the limiting distribution. Lastly, for a p dimensional parameter β the same

reasoning applies and the result is
√
n(β̂−β0)

d−→Np(0, {i∗(β0)}−1), where i∗(β0) is an p× p
matrix with (j, k)th entry n−1E(−∂2l(β)/∂βj∂βk). It is part of the assumption that i∗(β0)
is invertible.

3.3.3 Asymptotic efficiency

Let β̂ ≡ β̂(Y ) be any estimator of β which is a sufficiently smooth function of the data and
let m(β) = Eβ{β̂(Y )}. Because the correlation of two random variables is strictly between
−1 and 1, �

covβ
�
β̂(Y ), l1(β)

��2
≤ i(β)varβ

�
β̂(Y )

�
. (3.11)

But under the usual regularity conditions,

covβ
�
β̂(Y ), l1(β)

�
=

�

Y
β̂(y)

�
d

dβ
log f(y;β)

�
f(y;β)dy = m�(β) .

Hence, by (3.11),

varβ
�
β̂(Y )

�
≥ {m�(β)}2

i(β)
. (3.12)
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The above inequality is known as the Cramér-Rao lower bound. In the case of unbiased

estimators (that is m(β) = β) the Cramér-Rao lower bound takes the simpler form

varβ
�
β̂(Y )

�
≥ 1

i(β)
.

Thus any unbiased estimator that achieves the above lower bound is immediately seen to be
a minimum variance unbiased estimator.

Now, by (3.10) the maximum likelihood estimator β̂ is asymptotically normally distributed
with mean β0 and variance 1/i(β0). Hence, even though there might not be an estimator
that achieves the Cramér-Rao lower bound for finite n, the maximum likelihood estimator
achieves it as n → ∞. In this sense the maximum likelihood estimator is asymptotically

efficient (or, more accurately, first-order efficient).
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3.4 Fundamental asymptotic expansions

3.4.1 Expansion of β̂ − β0

Assume that the log-likelihood is four times continuously differentiable and that the fifth
derivative exists in some neighbourhood of the true value β0.

Having established that β̂−β0 = Op
�
n−1/2

�
and how the asymptotic orders of likelihood-

related quantities can be obtained, an application of Taylor’s theorem leads to the following
stochastic asymptotic expansion

0 = l1(β̂) = l1(β0)+(β̂−β0)l2(β0)+
1

2
(β̂−β0)

2l3(β0)+
1

6
(β̂−β0)

3l4(β0)+Op
�
n−1

�
. (3.13)

For notational simplicity, write δ = β̂−β0 and suppress the argument whenever a function is
evaluated at β0, that is lr ≡ lr(β0), Hr ≡ Hr(β0), νr,s ≡ νr,s(β0), etc. (r, s = 1, 2, . . .). Then
(3.13) can be written as

0 = l1 + δl2 +
1

2
δ2l3 +

1

6
δ3l4 +Op

�
n−1

�
. (3.14)

Now, each lr is the sum of a Op
�
n1/2

�
stochastic term Hr and a O (n) deterministic term νr

(see Subsection 3.2.2). Substituting in (3.15) leads to

0 = l1 + δν2 +̇ δH2 +
1

2
δ2ν3 +̇

1

2
δ2H3 +

1

6
δ3ν4 +̇Op

�
n−1

�
, (3.15)

where the symbol +̇ denotes a drop in asymptotic order by n−1/2 and δ3H4/6 = Op
�
n−1/2

�

and hence absorbed by the remainder. Noting that −ν2 = i = O (n), with i ≡ i(β0), and
after some algebra we get

δ =
l1
i
+̇ δ

H2

i
+ δ2

ν3
2i

+̇ δ2
H3

2i
+ δ3

ν4
6i

+Op(n
−2) . (3.16)

The above expression is the implicit form of the expansion sought and allows direct application
of the iterative substitution method. Noting that

δ =
l1
i
+̇ δ

H2

i
+ δ2

ν3
2i

+̇Op(n
−3/2) ,

δ2 =
l21
i2

+̇ 2δ
H2l1
i2

+ δ2
ν3l1
i2

+̇Op(n
−2) and

δ3 =
l31
i3

+̇Op(n
−2) ,

two steps of the iterative substitution method on (3.16) and some rearrangement of terms
leads to

δ =
l1
i
+̇

H2l1
i2

+
ν3l21
2i3

+̇
H2

2 l1
i3

+
3ν3H2l21

2i4
+

ν23 l
3
1

2i5
+

H3l21
2i3

+
ν4l31
6i4

+̇Op
�
n−2

�
. (3.17)

Expression (3.17) is a basic ingredient for the subsequent discussion as it can be used for
obtaining asymptotic expansions for the bias, variance and higher order cumulants of the
maximum likelihood estimator.
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3.4.2 Asymptotic bias of β̂

For an asymptotic expansion of the bias one merely has to take expectations in both sides
of (3.17). The current form of (3.17) simplifies this process as the stochastic parts of the
summands are products of centered log-likelihood derivatives and hence their expectations
are joint null centered moments, whose asymptotic order can be easily calculated using rule
(3.3). Noting that Eβ0(l1/i) = 0, ν̄1,1 = i, ν̄1,2 = ν1,2 and that all terms of order Op

�
n−3/2

�

have expectations of order Op
�
n−2

�
, the asymptotic bias of β̂ admits the expansion

Eβ0(β̂ − β0) = 0 +̈
ν3 + 2ν1,2

2i2
+̈O

�
n−2

�
, (3.18)

where the symbol +̈ denotes a drop in asymptotic order by n−1.

3.4.3 Bias correction

Using (3.18), we can define a bias-corrected estimator as β̂BC = β̂ − b(β̂), where

b(β) =
ν3(β) + 2ν1,2(β)

2{i(β)}2 , (3.19)

or by a use of the Bartlett relations (3.2),

b(β) = −ν1,1,1(β) + ν1,2(β)

2{i(β)}2 . (3.20)

The bias-corrected estimator will have bias

Eβ0(β̂BC − β0) = Eβ0(β̂ − β0)− Eβ0{b(β̂)}
= b(β0)− Eβ0{b(β0) + (β̂ − β0)b

�(β0)}+O
�
n−2

�

= b�(β0)b(β0) +O
�
n−2

�
.

A direct application of Skovgaard’s theorem (Theorem 3.1) gives

b�(β0) =
db(β)

dβ

����
β=β0

=
ν23 + 2ν21,2 + 3ν3ν1,2

i3
+

ν4 + 3ν1,3 + 2(ν2,2 + ν1,1,2)

2i2
= O

�
n−1

�
,

(3.21)
and thus β̂BC has bias of order O

�
n−2

�
as opposed to that of β̂ which is of order O(n−1).

Example 3.2. (Exponential distribution with mean 1/λ) Consider independent and
identically distributed random variables with densities as in (1.2). Then, as we have seen in
Chapter 1, the maximum likelihood estimator for λ is λ̂ = 1/Ȳ . The first three derivatives of
the log-likelihood are l1(λ) = n/λ− nȲ , l2(λ) = −n/λ2 = −i(λ) and l3(λ) = 2n/λ3 = ν3(λ).
Furthermore, as ν1(λ) = 0, in this case we get ν1,2(λ) = 0 and substituting in (3.19), b(λ) =

λ/n. Hence the bias corrected estimator is λ̂BC = (n− 1)/
�n

i=1 Yi.

Table 3.1 gives the estimated biases and mean squared errors of λ̂ and λ̂BC for various
values of λ0, based on 10000 simulated samples of size n = 5. The superior performance of
λ̂BC in terms of bias and mean squared error is apparent for any value of λ0. A more careful
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Table 3.1: Estimated bias and estimated mean squared error (MSE) of λ̂ and λ̂BC for a random
sample of size n = 5 from the exponential distribution with mean 1/λ. The estimates are calculated
based on 10000 simulated sampled for each value of λ0.

λ0
Estimated bias Estimated MSE

λ̂ λ̂BC λ̂ λ̂BC

0.1 0.02504 0.00003 0.00587 0.00336
0.7 0.18160 0.00528 0.29559 0.16810
1.3 0.31539 -0.00769 0.97714 0.56177
1.9 0.48286 0.00629 2.11375 1.20362
2.5 0.60376 -0.01699 3.31455 1.88830
3.3 0.80564 -0.01549 6.22776 3.57062
3.9 0.98943 0.01154 9.20051 5.26192
4.5 1.13511 0.00809 12.52054 7.18859
5.1 1.22392 -0.04086 14.57797 8.37287
5.9 1.51747 0.03397 21.93058 12.56300

Figure 3.1: Estimated bias of λ̂ and λ̂BC for a random sample of size n = 5 from the exponential
distribution with mean 1/λ.
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examination results in Figure 3.1. It appears that the bias of λ̂ increases linearly with the
value of λ and that this bias is eliminated when λ̂BC is used.

In fact, in this particular case, noting that
�n

i=1 Yi ∼ G(n, 1/λ), a change of variable

gives that λ̂ has density

g(λ̂;λ) =
(nλ)n exp

�
−nλ/λ̂

�

λ̂n+1Γ(n)
, λ > 0 .

A calculation of the expected value gives that Eλ0(λ̂) = nλ0/(n − 1), so that the estimator
(n − 1)/

�n
i=1 Yi is exactly unbiased. Hence, in that case correction of the first-order bias

results in an exactly unbiased estimator.

Example 3.3. (Sampling from exponential families) Consider independent random
variables Y1, . . . , Yn each having density (or probability mass) functions of the form (2.11)
with d = 1, natural statistic t(yi), natural parameter θi(β) (i = 1, . . . , n) and common
cumulant transform k(.). Then the log-likelihood for β has the form

l(β) =
n�

i=1

t(Yi)θi(β)−
n�

i=1

k{θi(β)} , β ∈ B ⊆ �p , (3.22)

up to some additive constant not depending on β. Note that, according to the definition
in Example 2.7, if θi(β) = ci0 +

�p
t=1 βtcit , for constants cit (i = 1, . . . , n ; t = 0, . . . , p)

then the joint distribution of Y1, . . . , Yn is a full exponential family with natural statistics�n
i=1 t(yi)ci1, . . . ,

�n
i=1 t(yi)cip and natural parameters β1, . . . ,βp.

Expression (3.22) is the general form of the log-likelihood for many well-used generalized
linear models. For example, in binomial regression models, t(yi) = yi, Yi ∼ B(mi,πi),
θi = log{πi/(1−πi)}, k(θi) = mi log{1+exp(θi)} and g(πi) =

�p
t=1 βtxit, for some monotone

function g where xit is the (i, t)th entry of a matrix X with full rank p.
For p = 1, the first two log-likelihood derivatives are

l1(β) =
n�

i=1

θ�i(β)
�
t(Yi)− k�{θi(β)}

�
, (3.23)

l2(β) =
n�

i=1

θ��i (β)
�
t(Yi)− k�{θi(β)}

�
−

n�

i=1

{θ�i(β)}2k��{θi(β)} ,

where k�(θ) = dk(θ)/dθ, k��(θ) = d2k(θ)/dθ2 etc. Noting that Eβ{t(Yi)} = k�{θi(β)} and
varβ{t(Yi)} = k��{θi(β)},

i(β) =
n�

i=1

{θ�i(β)}2varβ{t(Yi)} ,

ν1,2(β) =
n�

i=1

θ�i(β)θ
��
i (β)varβ{t(Yi)} ,

ν1,1,1(β) =
n�

i=1

{θ�i(β)}3cum3,β{t(Yi)} ,

31



3.4. Fundamental asymptotic expansions
ST414: Asymptotic Statistics

I. Kosmidis, Autumn 2009-2010

where cum3,β{t(Yi)} = k���{θi(β)} is the third-order cumulant of t(Yi) (i = 1, . . . , n). Then,
a substitution of the above expressions in (3.20) gives

b(β) = −
�n

i=1

�
θ�i(β)θ

��
i (β)varβ{t(Yi)}+ {θ�i(β)}3cum3,β{t(Yi)}

�

2 [
�n

i=1{θ�i(β)}2varβ{t(Yi)}]
2 . (3.24)

Now, if θi(β) = ci0+ciβ, for constants ci0 and ci (i = 1, . . . , n) (i.e. when the family is full
with natural statistic

�n
i=1 t(Yi)ci), then θ�i(β) = ci and θ��i (β) = 0. Hence, (3.24) simplifies

to

b(β) = −
�n

i=1 c
3
i cum3,β{t(Yi)}

2
��n

i=1 c
2
i varβ{t(Yi)}

�2 . (3.25)

Thus, the expression for the first-order bias in Example 3.2 can be derived by noting that, in
that case, t(yi) = yi, ci = −1, varλ(Yi) = 1/λ2 and cum3,λ(Yi) = 2/λ3.

3.4.4 Bias reduction

An alternative estimator with bias of order O
�
n−2

�
results as the root of the adjusted score

equation
l1(β)− i(β)b(β) = 0 .

This result was derived in Firth (1993) for regular families with p ≥ 1 parameters, but it can
be easily derived in the one-parameter case: let β̂BR be the estimator that results from the
solution of l∗1(β) = l1(β) +A(β) = 0, where A(β) is some function of the parameter which is
O(1) as n → ∞. Then, exactly as was done for the maximum likelihood estimator, expand
l1(β̂BR) around β0 and discard terms of order Op

�
n−1

�
. Inverting the resultant expansion

in terms of β̂BR − β0 and taking expectations reveals that a bias-reducing adjustment to the
score function is A(β) = −i(β)b(β).

In the case of repeated sampling under a full exponential family with natural parameter β,
the first term of the right hand side of expression (3.23) for l2(β) is zero and thus ν2,1(β) = 0
because l2(β) does not depend on the data. Hence, an application of Skovgaard’s theorem
gives

A(β) = i(β)
ν1,1,1(β)

2{i(β)}2 =
d

dβ
log{i(β)}1/2 .

Thus, l∗1(β) is the derivative of the logarithm of the penalized likelihood L∗(β) = L(β){i(β)}1/2;
for a full exponential family model, the posterior mode when using the Jefrreys invariant prior
(Jeffreys, 1946) has second-order bias in terms of its frequentist properties.

Example 3.4. (Logistic regression) Consider independent binomial random variables
Y1, . . . , Yn with probabilities of “success” π1, . . . ,πn, respectively, and totals m each, and
suppose that the log-odds of success satisfy the relationship

log
πi

1− πi
= βxi (i = 1, . . . , n) ,

where β is a scalar parameter. This is a logistic regression model and is an one-parameter ex-
ponential family with natural statistic

�n
i=1 yixi and natural parameter β (see Example 3.3).

The likelihood equation l1(β) = 0 is directly obtained by (3.23); substituting θi(β) = βxi
gives

n�

i=1

Yixi =
�

mπi(β)xi , (3.26)
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that is the maximum likelihood estimate results by equating the natural statistic to its ex-
pected value. The latter is true for any full exponential family model.

Differentiating the cumulant transform for the binomial distribution in Table 2.1 gives
varβ(Yi) = mπi(1 − πi) and cum3,β(Yi) = mπi(1 − πi)(1 − 2πi). Thus, by (3.25) the bias-
corrected estimator for β is

β̂BC = β̂ +

�n
i=1

�
π̂i(1− π̂i)(1− 2π̂i)x3i

�

2m
��n

i=1 π̂i(1− π̂i)x2i
�2 ,

where π̂i = exp(β̂xi)/{1 + exp(β̂xi)} (i = 1, . . . , n).
Furthermore, because the family is full, the bias-reduced estimate β̂BR results by maxi-

mizing

l(β) +
1

2
log

�
n�

i=1

mπi(β){1− πi(β)}x2i

�

For n = 1, and x = 1, the setting of Example 2.8 results with β̂BC = log{Y/(m− Y )}−
(m − 2Y )/{2Y (m − Y )} and β̂BR = log{(Y + 1/2)/(m − Y + 1/2)}. Thus β̂BR reproduces
the Haldane-Anscombe correction, while β̂BC naively subtracts the estimated first-order bias
from β̂, and thus it is undefined if either Y = 0 or Y = m is observed.

Now, let n = 5, m = 2 and x = (−2,−1, 0, 1, 2). In this case the natural statistic can
only take the values −6,−5, . . . , 0, . . . , 5, 6 and so according to (3.26), there are at most 13
possible values for the estimators β̂, β̂BC and β̂BR.

Those values are given in Table 3.2. When the natural statistic is either −6 or 6, β̂ is
infinite and hence β̂BC is undefined. In contrast, the bias-reduced estimate is always finite.

Note that if we give a certain value for the true parameter β0, then we can calculate the
true π1, . . . ,π5 and hence the probability that the natural statistic takes a particular value.
These sampling probabilities are given in Table 3.2 for β0 = 0.5 and β0 = 1. The probability
of observing a sample that results in infinite maximum likelihood estimate — or, equivalently
the probability that β̂BC is undefined — is not negligible; it is about 0.04 for β0 = 0.5 and
0.17 for β0 = 1. The bias and mean squared error of the β̂BR are well-defined quantities and
are 0.007 and 0.264, respectively for β0 = 0.5, and −0.029 and 0.328 for β0 = 1. These seem
satisfactory given the small sample-size and given that the corresponding quantities for β̂
and β̂BC are undefined.

In previous examples, we have seen how we can improve estimation by using estimators
with O

�
n−2

�
bias. However, such estimators have the big disadvantage of not being pa-

rameterization invariant. For example, the unbiased estimator σ̂2 of σ2 (see Example 2.2)
does not deliver an unbiased estimator of σ. Furthermore, there are cases where bias correc-
tion/reduction can inflate the variance (see Subsection 3.4.6). The use of those estimators
is suggested only after a specific parameterization for the problem has been chosen via a
parameterization invariant method (like maximum likelihood). Nevertheless, even then their
properties should be carefully examined either analytically or via simulation.

3.4.5 Asymptotic variance of β̂

By definition, the variance of an estimator β̂ can be written as

varβ0(β̂) = Eβ0

�
(β̂ − β0)

2
�
−
�
Eβ0(β̂ − β0)

�2
. (3.27)
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Table 3.2: The values of β̂, β̂BC and β̂BR for each value of the natural statistic for n = 5, m = 2 and
x = (−2,−1, 0, 1, 2). The sampling probabilities for β0 = 0.5 and β0 = 1 are also given.

�5
i=1 yixi β̂ β̂BC β̂BR

Sampling probabilities
β0 = 0.5 β0 = 1

-6 −∞ − -2.009 < 0.001 < 0.001
-5 -1.587 -1.047 -1.183 0.001 < 0.001
-4 -1.012 -0.767 -0.815 0.003 < 0.001
-3 -0.674 -0.538 -0.561 0.010 < 0.001
-2 -0.420 -0.343 -0.355 0.024 0.002
-1 -0.202 -0.167 -0.173 0.052 0.006
0 0 0 0 0.094 0.019
1 0.202 0.167 0.173 0.141 0.046
2 0.420 0.343 0.355 0.180 0.098
3 0.674 0.538 0.561 0.191 0.171
4 1.012 0.767 0.815 0.158 0.233
5 1.587 1.047 1.183 0.104 0.253
6 ∞ − 2.008 0.043 0.172

Hence, if we obtain an asymptotic expansion for the mean squared error Eβ0{(β̂ − β0)2} and

substitute the asymptotic expansion (3.18) for Eβ0(β̂ − β0) in the above expression gives an

asymptotic expansion for the variance of β̂.
Taking squares in both sides of (3.17) and disregarding terms of order Op(n−5/2) (this

order is the best we can do in terms of approximation as it is the order of the product of the
first term and the remainder in (3.17)), gives

(β̂ − β0)
2 =

l21
i2

+̇
2H2l21
i3

+
ν3l31
i4

(3.28)

+̇
3H2

2 l
2
1

i4
+

4ν3H2l31
i5

+
5ν23 l

4
1

4i6
+

H3l31
i4

+
ν4l41
3i5

+̇Op

�
n−5/2

�
.

Taking expectations in both sides of the above expression gives

E
�
(β̂ − β0)

2
�
=

1

i
+̈

2ν̄1,1,2
i3

+
ν3ν̄1,1,1

i4
+

3ν̄1,1,2,2
i4

+
4ν3ν̄1,1,1,2

i5
(3.29)

+
5ν23 ν̄1,1,1,1

4i6
+

ν̄1,1,1,3
i4

+
ν4ν̄1,1,1,1

3i5
+̈O

�
n−3

�
.

Now, by (3.4) derived in Example 3.1 and by the relation v2 = −i,

ν̄1,1,1,1 = 3i2 +O(n) , (3.30)

ν̄1,1,1,2 = 3iν1,2 +O(n) ,

ν̄1,1,1,3 = 3iν1,3 +O(n) ,

ν̄1,1,2,2 = 2ν21,2 + i(ν2,2 − i2) +O (n) .

Furthermore, by the definition of H1 and H2 and the Bartlett identities,

ν̄1,1,1 = ν1,1,1 = −ν3 − 3ν1,2 , (3.31)

ν̄1,1,2 = ν1,1,2 + i2 .
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Substituting relations (3.30) and (3.31) in (3.29) and collecting terms, an asymptotic expan-
sion for the mean squared error of β̂ is

E
�
(β̂ − β0)

2
�
=

1

i
+̈

2ν1,1,2 + (ν2,2 − i2) + 2ν2,2 + ν4 + 3ν3,1
i3

(3.32)

+
11ν23 + 36ν3ν1,2 + 24ν21,2

4i4
+̈O

�
n−3

�
.

Taking squares at both sides of (3.18) results in the asymptotic expansion

�
Eβ0(β̂ − β0)

�2
=

ν23 + 4ν21,2 + 4ν3ν1,2

4i4
+̈O

�
n−3

�
. (3.33)

Hence, a simple substitution of (3.33) and (3.32) in (3.27) gives

varβ0(β̂) =
1

i
+̈

2ν1,1,2 + (ν2,2 − i2) + 2ν2,2 + ν4 + 3ν3,1
i3

(3.34)

+
5ν23 + 16ν3ν1,2 + 10ν21,2

2i4
+̈O

�
n−3

�
.

3.4.6 Bias correction/reduction and second-order efficiency

Using (3.33) and (3.21), (3.34) can be re-written in the simple form

varβ0(β̂) =
1

i
+̈

2b�

i
+ 2b2 +

γ2

i
+̈O

�
n−3

�
, (3.35)

where b ≡ b(β0), b� ≡ b�(β0). The quantity

γ ≡ γ(β0) = i−3/2{i(ν2,2 − i2)− ν21,2}1/2 ,

is called the statistical curvature (Efron, 1975) and is zero for full exponential families and
positive else.

Furthermore, it can be shown that the variance of the bias-corrected estimator admits
the expansion

varβ0(β̂BC) =
1

i
+̈ 2b2 +

γ2

i
+̈O

�
n−3

�
, (3.36)

and that the same expansion is also valid for varβ0(β̂BR). Ignoring the O
�
n−3

�
terms, ex-

pressions (3.35) and (3.36) are the same except for the term 2b�/i which does not appear
in (3.36). While all other terms outside the remainder are non-negative, the sign of 2b�/i
depends on the particular model we consider and on β0. Hence, we cannot say anything
definite on which estimator has smaller variance, and, as already mentioned, there can be
cases where bias correction/reduction leads to estimators with larger variance than varβ0(β̂).

Nevertheless, the O
�
n−2

�
term in (3.36) is non-negative, and is zero only when γ = 0 and

b = 0 that is for full exponential families in mean-value parameterization (i.e. families for
which Eβ{T (Y1, . . . , Yn)} = β, where T (Y1, . . . , Yn) is the natural statistic). In fact, it can
be shown that this is the case where the maximum likelihood estimator is exactly unbiased
and the Cramér-Rao lower bound is attained.

Finally, it can be shown (Efron, 1975) that for any estimator β̃ with bias of order O
�
n−2

�
,

varβ0(β̃) = V +∆+O(n−3) ,

where V is the right hand side of (3.36) and ∆ ≡ ∆(β0) is non-negative being zero when β̃
is either β̂BC or β̂BR. Hence, in the class of estimators with bias of order O

�
n−2

�
, β̂BC and

β̂BR are both second order efficient estimators of β.
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3.5 Approximate pivots

3.5.1 Expansion of l(β̂)− l(β0)

We now turn our attention to the log-likelihood ratio and the construction of asymptotic
pivots based on it. Letting δ = β̂ − β0, an expansion of l(β̂) around β0 gives

l(β̂)− l(β0) = δl1 +
1

2
δ2l2 +̇

1

6
δ3l3 +̇

1

24
δ4l4 +Op

�
n−3/2

�
.

Replacing lr = νr +Hr (r = 1, . . . , n) we get

l(β̂)− l(β0) = δl1 +
1

2
δ2ν2 +̇

1

2
δ2H2 +

1

6
δ3ν3 +̇

1

6
δ3H3 +

1

24
δ4ν4 +Op

�
n−3/2

�
. (3.37)

Now, consider random variables X, Y and Z such that X = Op
�
n−1/2

�
, Y = Op

�
n−1

�

and Z = Op
�
n−3/2

�
. Then,

(X + Y + Z)3 = X3 +̇ 3X2Y +̇ 3XY 2 + 3X2Z +̇Op
�
n−3

�
.

Substituting each of X, Y and Z with the Op
�
n−1/2

�
, Op

�
n−1

�
and Op

�
n−3/2

�
terms in

(3.17) we get an expansion for δ3. Now, if we use that expansion in (3.37) along with the
expansions (3.17) and (3.28), some algebra gives that

l(β̂)− l(β0) =
l21
2i

+̇
ν3l31 + 3iH2l21

6i3
+̇

3ν23 l
4
1 + iν4l41
24i5

(3.38)

+
H3l31 + 3ν3H2l31

6i3
+

H2
2 l

2
1

2i3
+̇Op

�
n−3/2

�
.

According to the above expansion a first-order approximation of the log-likelihood ratio is

l21/2i. Nevertheless, by the central limit theorem l1/
√
i

d−→N(0, 1) and an application of the

continuous mapping theorem gives that l21/i
d−→χ2

1 (chi-squared distribution with one degree

of freedom). Hence, by Slutzky’s lemma w(β0) = 2{l(β̂) − l(β0)}
d−→χ2

1. Furthermore, an
expansion of {l21/i + a}1/2 around a = 0 gives that r(β) of Chapter 1 has a N(0, 1) limiting
distribution.

Finally, expanding l(β0) around β̂ we can write

−2{l(β0)− l(β̂)} = (β̂ − β0)
2j(β̂) +̇Op

�
n−1/2

�
. (3.39)

The above expression reveals that the quantity t2(β0) = (β̂ − β0)2j(β̂) can be viewed as a
quadratic approximation of w(β0) at β̂. Then, as before, an expansion of {(β̂−β0)2j(β̂)+a}1/2
around a = 0 gives that the approximate pivot t(β) is a linearized version of r(β) at β̂. Note
that by the asymptotic normality of the maximum likelihood estimator t(β) has a N(0, 1)
limiting distribution. This provides an alternative justification for the limiting distribution
of w(β).

3.6 Bartlett correction

If we take expectations in both sides of (3.38) and multiply by 2, then

Eβ0{w(β0)} = 1 +̈ d(β0) +̈O
�
n−2

�
.
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The above expression suggests that if we define

w∗(β) =
w(β)

1 + d(β)
,

then Eβ{w∗(β)} = 1+O
�
n−2

�
which gives a better approximation to the expectation of the

limiting χ2
1 distribution. This simple adjustment is known as Bartlett correction (Bartlett,

1937), and for continuous models it has the remarkable effect of correcting not only the
expectation but simultaneously all the cumulants — and hence, the distribution — of w(β)
towards those of the χ2

1 distribution.
In particular, if G(c) is the distribution function of a χ2

1 random variable, it can be shown
that

P{w(β) ≤ c;β} = G(c)
�
1 +O(n−1)

�
,

while
P{w∗(β) ≤ c;β} = G(c)

�
1 +O(n−2)

�
,

Example 3.5. (Sampling from exponential families - continued) Continuing Exam-
ple 3.3 we consider a more special case where Y1, . . . , Yn are independent and identically

distributed copies of a random variable Y which is distributed according to an one-parameter
exponential family of distributions with natural parameter θ. According to (3.22) the log-
likelihood for the natural parameter θ is

l(θ) = θ
n�

i=1

t(Yi)− nk(θ) .

Then,

l1(θ) =
n�

i=1

t(Yi)− nk�(θ) , (3.40)

lr(θ) = −n
drk(θ)

dθr
(r = 2, 3, . . .) ,

hence lr(θ) = νr(θ) and Hr(θ) = 0 for r = 2, 3, . . .. Furthermore, by Example 2.7, the
cumulants of t(Y ) are κr = drk(θ)/dθr (r = 1, 2, . . .) and so i(θ) = nκ2. Hence, in that case
the terms in the second row of expression (3.38) are all zero and thus

w(θ) =
1

nκ2
{l1(θ)}2 −̇

κ3
3n2κ32

{l1(θ)}3 −̇
1

12n3κ42

�
κ4 −

3κ23
κ2

�
{l1(θ)}4 +̇Op

�
n−3/2

�
(3.41)

Noting that ν1,r = 0 for r = 2, 3, . . . and by (3.31) and (3.30),

ν1,1,1(θ) = nκ3 ,

ν1,1,1,1(θ) = 3n2κ22 +O (n) .

Thus, if we take expectations in both sides of (3.41), we get the expansion

Eθ{w(θ)} = 1 +̈
3κ23
4nκ32

− κ23
3nκ32

− κ4
4nκ22

+̇Op
�
n−2

�
.
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Figure 3.2: Q-Q plot of 100000 simulated values of w(1) against the quantiles of a χ2
1 dis-

tribution for n = 1. The grey line is expected relationship between the quantiles of the χ2
1

distribution and the values of w(1). The blue and the green lines are through the origin and
have slopes the expectation of w(1) up to order O(n−2) and the exact expectation of w(1),
respectively.
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Hence writing, ρ3 = κ3/κ
3/2
2 and ρ4 = κ4/κ22 for the standardized cumulants (see Subsec-

tion 2.3.2),

Eθ{w(θ)} = 1− 1

12n

�
3ρ4 − 5ρ23

�
+O

�
n−2

�
.

Thus, the Bartlett corrected version of w(β) is

w∗(θ) =
12n

12n+ 5ρ23 − 3ρ4
w(θ) .

For the setting of Section 1.2, w(λ) = {r(λ)}2 = 2n(Ȳ λ− log(Ȳ λ)−1) and the cumulants
of t(Y ) = Y , in this case, are κ1 = 1/λ, κ2 = 1/λ2, κ3 = 2/λ3 and κ4 = 6/λ4. Thus ρ3 = 2
and ρ4 = 6. Hence, Eλ{w(λ)} = 1 + 1/(6n) + O

�
n−2

�
and the Bartlett corrected version of

w(λ) is

w∗(λ) =
12n(Ȳ λ− log(Ȳ λ)− 1)

6n+ 1
.
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Figure 3.2 is a Q-Q plot of 100000 simulated values of w(1) against the quantiles of a χ2
1

distribution for n = 1. The expected relationship between the quantiles of the χ2
1 distribution

and the values of w(1) is the grey 45o line. Nevertheless, the relationship departs from what
is expected. Importantly, the relationship seems to agree with a line through the origin with
slope 1+1/(6n) (blue line). This is the Bartlett correction and in this case, even for n = 1, is
very close to the exact expectation of w(λ) (green line) which is Eλ{w(λ)} = 2n log n−2nψ(n)
(to see that this is the exact expectation of w(λ) note that

�n
i=1 Yi ∼ G(n, 1/λ), find the

natural statistics when both natural parameters θ1 = n and θ2 = λ are unknown and find
E(log

�n
i=1 Yi) via the cumulant transform).

In models for discrete random variables, Bartlett correction does not necessarily lead to an
improved χ2

1 approximation. For example, the simulation studies in Frydenberg and Jensen
(1989) suggest that for a model with multinomial responses the Bartlett correction of w(β)
does not lead to any significant improvement to the χ2

1 approximation.
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3.7 The case of more than one parameters

To obtain the asymptotic expansions of previous sections in the case of more than one param-
eters would require the application of the multivariate Taylor’s theorem and the multivariate
extensions of the definitions and results of Chapter 2. As for the notation, there is a set of
notational rules called index notation which along with the Einstein’s summation conven-

tion provide an elegant way of obtaining the corresponding expansions, treating the terms
as if they were one-dimensional and avoiding algebraic considerations when taking products
of multidimensional arrays. For the interested reader, two excellent textbooks focusing on
multi-parameter expansions and generally statistical asymptotics are McCullagh and Nelder
(1989) and Pace and Salvan (1997). Here we shall merely provide the extensions of the results
we have seen so far in many dimensions.

We need to distinguish between two different setting in the multi-parameter case: 1) all
p parameters are of interest, and 2) there are k parameters of interest and p − k nuisances,
that is parameters which are of secondary scientific importance, though essential for realistic
modelling.

3.7.1 All p parameters of interest

Score function and information

For problems with a p-dimensional parameter β (no nuisances), the score function u(β) ≡
u(β;Y ) has p components and is defined as

u(β) = ∇l(β) ,

where l(β) ≡ l(β;Y ) is the log-likelihood function. Arguing component by component, a
similar argument as in the single-parameter case gives Eβ{u(β)} = 0.

Furthermore the observed information j(β) is now a p× p matrix and is defined as

j(β) = −∇∇T l(β) .

The expected information matrix is

i(β) = Eβ{j(β)} . (3.42)

Similar arguments as in the case of a single parameter result in i(β) = covβ{u(β)}, which
along with (3.42) provide a generalization of the information identity in (3.2). In fact, all
Bartlett identities can be written in the multi-parameter settings with appropriate extensions
in notation (for example, in the case of p parameters, the quantity to ν4 corresponds to a
four-way p× p× p× p array).

Asymptotic bias and asymptotic variance of the maximum likelihood estimator

The first-order bias term of the maximum likelihood estimator β̂ in the multi-parameter case
takes the form

b(β0) = −i(β0)
−1A(β0) .

The function A(β0) has tth component

At =
1

2
tr
�
i−1{Pt +Qt}

�
(t = 1, . . . , p) ,
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where tr(B), denotes the trace of a matrix B and Pt = Eβ0{uuTut}, Qt = −Eβ0{jut} are joint
null moments of log-likelihood derivatives with u ≡ u(β0), j ≡ j(β0), etc. The bias corrected
estimator is β̂BC = β̂ − b(β̂) while the bias-reduced estimator results by the solution of the
adjusted-score equations

u(β)− i(β)b(β) = 0 .

Furthermore, the nice penalized likelihood interpretation of bias-reduction in Subsection 3.4.4
extends in the multi-parameter case; in full exponential families with natural parameters β,
if we penalize the likelihood by Jeffreys invariant prior, that is

l∗(β) = l(β) +
1

2
log |i(β)| ,

then the posterior mode has bias of order O
�
n−2

�
. In the above expression |i(β)| denotes

the determinant of i(β).
A similar expansion as (3.34), but now in the multi-parameter case gives

covβ0(β̂) = {i(β0)}−1 +̈O
�
n−2

�
,

so that the asymptotic variance-covariance matrix of the maximum likelihood estimator is
{i(β0)}−1, which is also the Cramér-Rao lower bound. All the considerations on first and
second order efficiency in previous sections directly extend to the case of many parameters.

Confidence regions

As already mentioned in Subsection 3.3.2 if β is p-dimensional then
√
n(β̂ − β0)

d−→Np(0, {i∗(β0)}−1) , (3.43)

where i∗(β0) is the expected information per observation (i∗(β0) = i(β0)/n). Thus, if we
define,

t2(β) = (β̂ − β)T i(β)(β̂ − β) , (3.44)

then, by the continuous mapping theorem, we can construct approximate confidence regions

at level 1− α as
{β : t2(β) ≤ χ2

p,1−α} , (3.45)

where χ2
p,1−α is the (1−a)th quantile of the chi-squared distribution with p degrees of freedom.

The expected information i(β) in expression (3.44) can be replaced by either i(β̂), j(β), or
j(β̂) without affecting the limiting distribution.

Furthermore, the generalization of the expansion (3.38) of the log-likelihood ratio to many
dimensions gives

w(β0) = u(β0)
T {i(β0)}−1u(β0) +Op

�
n−1/2

�
, (3.46)

and so, by an application of the multivariate version of the central limit theorem on u(β),
the quantities

s2(β) = u(β)T {i(β)}−1u(β) , (3.47)

w(β) = 2{l(β̂)− l(β)} , (3.48)

both have a limiting chi-squared distribution with p degrees of freedom. Hence, approximate
confidence regions can be constructed as in (3.45) by replacing t2(β) with either w(β) or
s2(β). Again, i(β) in expression (3.47) can be replaced by either i(β̂), j(β), or j(β̂) without
affecting the limiting distribution.
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Example 3.6. (Weibull distribution) Consider Y1, . . . , Yn independent and identically
distributed copies of a random variable Y from the Weibull distribution with parameters λ
and ν, that is

fY (y;λ, ν) = νλyν−1 exp{−λyν} , λ, ν > 0 , y > 0

Then the log-likelihood function for λ and ν is

l(λ, ν) = −λ
n�

i=1

Y ν
i + ν

n�

i=1

log Yi + n log λ+ n log ν .

The score function u(λ, ν) has components

∂l(λ, ν)

∂λ
=

n

λ
−

n�

i=1

Y ν
i ,

∂l(λ, ν)

∂ν
=

n

ν
+

n�

i=1

log Yi − λ
n�

i=1

Y ν
i log Yi .

Hence the likelihood equation ∂l(λ, ν)/∂λ = 0 gives λ̂ν = n/
�n

i=1 Y
ν
i , and replacing for λ in

∂l(λ, ν)/∂ν = 0, gives
n

ν̂
+

n�

i=1

log Yi −
n
�n

i=1 Y
ν̂
i log Yi�n

i=1 Y
ν̂
i

= 0 ,

which needs to be solved numerically. Furthermore, a calculation of the components of the
matrix of second derivatives gives that the observed information on λ and ν is

j(λ, ν) =





n

λ2

n�

i=1

Y ν
i log Yi

n�

i=1

Y ν
i log Yi

n

ν2
+ λ

n�

i=1

Y ν
i (log Yi)

2




,

whose inverse at (λ̂, ν̂) gives and estimate of the asymptotic variance-covariance matrix of
the maximum likelihood estimator.

Figure 3.3 shows the confidence regions based on w(λ, ν), s2(λ, ν), t2(λ, ν) for various
confidence levels based on a simulated data set of size 20 from the Weibull distribution with
λ = 1 and ν = 1. For convenience, we use the versions of s2(λ, ν) and t2(λ, ν) which are
based on the observed information. The confidence regions based on t2(λ, ν) are concentric
ellipsoids around the maximum likelihood estimates and their shape approximates the shape
of the corresponding regions based on w(θ). Confidence regions based on s2(λ, ν) have quite
weird shapes for confidence levels greater or equal to 0.9. This behaviour is mainly due to
the small sample size and is comparable to the behaviour of the approximate pivot s(β) in
the example of Section 1.2. The estimated coverages of the confidence regions in Table 3.3
confirm that both w(λ, ν) and t2(λ, ν) perform considerably well, resulting in confidence
regions being quite close to the nominal levels, while s2(λ, ν) performs poorly undercovering
the true values.
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Table 3.3: Estimated coverage of confidence regions based on w(λ, ν), s2(λ, ν) and t2(λ, ν) when
n = 20. The estimates are based on a simulation of size 10000 when the true parameter values are
λ0 = 1 and ν0 = 1.

Nominal w(λ, ν) t2(λ, ν) s2(λ, ν) Simulation s.e.

0.90 0.8900 0.8938 0.8538 0.0030
0.95 0.9455 0.9428 0.9041 0.0022
0.99 0.9875 0.9816 0.9573 0.0010

3.7.2 Changes in parameterization

Suppose we transform from β by a one-to-one smooth transformation to a new parameter φ =
g(β). Then, the inverse transformation is β = g−1(φ) and the Jacobian of the transformation
is ∂φ/∂β, in which the rows correspond to the components of φ and the columns to those
of β. The log-likelihood for φ is l(φ)(φ) = l(β){g−1(φ)}, where l(β)(β) is the log-likelihood on
β, and φ̂ = g(β̂). Nevertheless, for the score functions and the expected information matrix,
direct differentiation gives the relationships

u(φ)(φ) =

�
∂β

∂φ

�T

u(β){g−1(φ)} ,

i(φ)(φ) =

�
∂β

∂φ

�T

i(β){g−1(φ)}
�
∂β

∂φ

�
,

where u(β), i(β) and u(φ), i(φ) are the score and the expected information in the β and φ
parameterization, respectively. Hence, the score and the information matrix are generally
affected by changes in parameterization.

Because l(φ)(φ) = l(β){g−1(φ)}, the quantity w(β) in expression (3.48) is parameterization
invariant. For example, if p = 1 and (−2, 3) is a 95% approximate confidence interval for β
based on the log-likelihood ratio, then (−1/2, 1/3) is a confidence interval for φ = 1/β based
on the log-likelihood ratio. The same is not true for t2(β) and is true for s2(β) only when
the expected information is used in its expression (as is done in (3.47)).

Hence, for example, from the approximate pivots of Chapter 1, r(β) is parameterization
invariant, s(β) is parameterization invariant only if either i(β) of i(β̂) are used in place of
j(β̂) and t(β) is not parameterization invariant.

Nevertheless, there might be a case where we are interested on constructing a confidence
interval for a scalar parameter φ = g(β) where, for example, g : �p → �. There is a simple
result called the delta method for this. A Taylor expansion of g(β̂) around β gives

g(β̂) = g(β) + {∇g(β)}T (β̂ − β) +Op
�
n−1

�
.

Thus, √
n
�
g(β̂)− g(β)

�
= {∇g(β)}T

√
n(β̂ − β) +Op

�
n−1/2

�
.

Using (3.43), an application of Slutzky’s lemma for multivariate random variables gives that

√
n
�
g(β̂)− g(β)

�
d−→N

�
0,σ2(β)

�
,
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Table 3.4: The effect of various doses of carbon disulfide on beetles.

logDose 1.691 1.724 1.755 1.784 1.811 1.837 1.861 1.884
killed 6 13 18 28 52 53 61 60
total 59 60 62 56 63 59 62 60

where σ2(β)/n = {∇g(β)}T {i(β)}−1∇g(β). Hence, an approximate 100(1− α)% confidence
interval for φ is 



g(β̂)− z1−a/2

�
σ2(β̂)

n
, g(β̂) + z1−a/2

�
σ2(β̂)

n




 . (3.49)

Corresponding results can be obtained when g : �m → �p.

Example 3.7. (A confidence interval for ED-50) Consider Y1, . . . , YN independent bi-
nomial random variables with totals m1, . . . ,mN and probabilities π1, . . . ,πN , respectively.
Furthermore, suppose that the probabilities are linked to parameters α and γ through the
relationship

h(πi) = α+ γxi (i = 1, . . . , N) ,

where h : (0, 1) → � and invertible. Models of this form are usually used to model the
effectiveness of a given drug where xi is a given dose (or some function of a given dose) for
which a binomial experiment took place. A parameter of interest in such experiments is the
ED-50 (effective dose 50) which is the dose for which the drug is effective in 50% of the
cases according to the binomial regression model. If α̂ and γ̂ are the maximum likelihood
estimators of α and γ then the estimator of ED-50 is φ̂ = (h(0.5)− α̂)/γ̂. In this case,

g(α, γ) =
h(0.5)− α

γ
,

and

∇g(α, γ) =

�
−1

γ
,−h(0.5)− α

γ2

�
.

Hence by the delta method, a simple substitution in (3.49) gives an approximate 100(1−α)%
confidence interval for φ.

Suppose that h(π) = log(− log(1 − π)) (complementary log-log link) and that we wish
to estimate the ED-50 for the beetles mortality data given in Table 3.4 (Agresti, 2002, Ta-
ble 6.14). According to the above, a simple calculation gives that φ̂ = 1.779 with estimated
standard error 0.004. Now, suppose that the α̂ and γ̂ are the true parameter values, so that
φ̂ = 1.779 is also the true value of ED-50. From a simulation of size 10000, the estimated
coverages of the approximate confidence interval (3.49) at nominal levels 0.90, 0.95 and 0.99
are 0.9017, 0.9512 and 0.9906 (the simulation standard errors are 0.0030, 0.0022 and 0.0030,
respectively), which illustrates the usefulness of the delta method.
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3.8 q parameters of interest, p− q nuisances

3.8.1 Profile likelihood

Cases like that of Example 3.7, where interest lies on inference for some function ψ = g(β)
rather than directly on β, are very common in statistical practice. While the delta method
can be useful in this respect, it only allows for Wald-type inferences for ψ, which behave
poorly for finite n when the distribution of g(β̂) is far from normal.

The concept of profile likelihood can be used to produce inferences for ψ from extensions
of the quantities w(β) and s2(β). The profile likelihood Lp(ψ) for ψ is defined as

Lp(ψ) = sup
{β:g(β)=ψ}

L(β) ,

that is the maximum is taken over all β which are consistent with a given value of ψ. In
many cases and possibly after suitable reparameterization, ψ may be defined as a component
of a given partitioning β = (ψ,λ) of β into subvectors ψ and λ of dimensions q and p − q
respectively, where λ is the vector of nuisance parameters. In this case the profile log-
likelihood for ψ is

lp(ψ) = l(ψ, λ̂ψ) ,

where λ̂ψ denotes the constrained maximum likelihood estimator of λ for a fixed value of ψ.
The profile likelihood is not a genuine likelihood, that is it does not generally correspond

to a probability distribution. Nevertheless, it has some special features that enable, to a
considerable extend, to think of it as if it were a genuine likelihood:

• A simple calculation gives

sup
ψ

lp(ψ) = sup
ψ

sup
λ

l(ψ,λ) = l(ψ̂, λ̂) .

Hence, the maximum profile likelihood estimator ψ̂ of ψ is equal to the ψ partition of
the maximum likelihood estimator β̂.

• If we define
wp(ψ) = 2{lp(ψ̂)− lp(ψ)} ,

then wp(ψ) = 2{l(ψ̂, λ̂)− l(ψ, λ̂)}. This latter form is used to perform a log-likelihood
ratio test for a hypothesis on ψ when λ is unknown and similar arguments as in the

previous sections can be used to show that wp(ψ)
d−→χ2

q . Hence, profile confidence
regions can be constructed as

{ψ : wp(ψ) ≤ χ2
q,1−α} . (3.50)

• The score function of β = (ψ,λ) can be partitioned as u(β) = {lψ(ψ,λ), lλ(ψ,λ)}, where
lψ(ψ,λ) = ∇ψl(ψ,λ) and lλ(ψ,λ) = ∇λl(ψ,λ). Correspondingly, the full observed
information j(β) = j(ψ,λ) and its inverse can be partitioned as

j(ψ,λ) =

�
jψψ(ψ,λ) jψλ(ψ,λ)
jλψ(ψ,λ) jλλ(ψ,λ)

�

{j(ψ,λ)}−1 =

�
jψψ(ψ,λ) jψλ(ψ,λ)
jλψ(ψ,λ) jλλ(ψ,λ)

�
.
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Then

∂lp(ψ)

∂ψ
= lψ(ψ, λ̂ψ) + lλ(ψ, λ̂ψ)

∂λ̂ψ

∂ψ

= lψ(ψ, λ̂ψ) ,

and

jp(ψ) = −
∂lp(ψ, λ̂ψ)

∂ψψT
= −lψψ(ψ, λ̂ψ)− lψλ(ψ, λ̂ψ)

∂λ̂ψ

∂ψ
, (3.51)

where jp(ψ) is the profile observed information and lψψ(ψ,λ) = ∇ψ∇T
ψ l(ψ,λ). On the

other hand, differentiating both sides of 0 = lλ(ψ, λ̂ψ) with respect to ψ gives

∂λ̂ψ

∂ψ
= −{lλλ(ψ, λ̂ψ)}−1lλψ(ψ, λ̂ψ) .

Substituting in (3.51) gives

jp(ψ) = −{lψψ − lψλ(lλλ)
−1lλψ} ,

where all the derivatives are evaluated at (ψ, λ̂ψ). By standard linear algebra rules for
the inversion of blocked matrices, the later expression gives the important identity

{jp(ψ)}−1 = jψψ(ψ, λ̂ψ) ,

that is the inverse of the profile observed information is equal to the ψ-block of the
inverse of the full information evaluated at (ψ, λ̂ψ). Hence, as {j(β̂)}−1 is an estimate of

the asymptotic variance-covariance matrix of β̂ (which is {i(β0)}−1) in the case with no
nuisances, {jp(ψ̂)}−1 can be used as an estimate of the asymptotic variance-covariance

matrix of ψ̂. In fact, ψ̂ has asymptotically a q-variate normal distribution with mean
ψ0 and variance-covariance matrix iψψ(ψ0,λψ0), where iψψ has corresponding meaning
to jψψ. Thus, we can define the combinants

s2p(ψ) = {lψ(ψ, λ̂ψ)}T jψψ(ψ, λ̂ψ)lψ(ψ, λ̂ψ) , (3.52)

t2p(ψ) = (ψ̂ − ψ)T {jψψ(ψ, λ̂ψ)}−1(ψ̂ − ψ) , (3.53)

which are both asymptotically distributed according to a χ2
q distribution and can be

used in the position of wp(ψ) in (3.50) for the construction of approximate confidence
regions. Furthermore, in both 3.52 and 3.53 the inverse of the profile observed infor-
mation jψψ(ψ, λ̂ψ) can be replaced by either jψψ(β̂) (since β̂ = (ψ̂, λ̂ψ̂)), i

ψψ(ψ, λ̂ψ) or

iψψ(β̂), without affecting the limiting χ2
q distribution.

• Lastly, by similar arguments as in the case of no nuisances, wp(ψ) is invariant under
interest-respecting reparameterizations (that is the new parameter of interest is an one-
to-one function of ψ while the new nuisance parameters can be functions of both ψ and
λ). The same is true for s2p(ψ) only when iψψ(ψ, λ̂ψ) or iψψ(β̂) are used in its definition,
and t2p(ψ) is not invariant under reparameterization.

If the parameter of interest ψ is a scalar then we can define the approximate pivots rp(ψ) as
the signed square root of wp(ψ) and sp(ψ), tp(ψ) are the square roots of s2p(ψ) and t2p(ψ).
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Example 3.8. (Weibull distribution - continued) Continuing from Example 3.6, we
have seen that λ̂ν = n/

�n
i=1 Y

ν
i and hence omitting any quantities that do not depend on

the parameters, the profile log-likelihood for ν is

lp(ν) = n log ν − n log
n�

i=1

Y ν
i + ν

n�

i=1

log Yi .

On the other hand, if the parameter of interest is λ then the constraint maximum likelihood
estimator ν̂λ of the nuisance ν is not defined explicitly and hence it has to be computed
numerically for each value of λ. The profile log-likelihood for λ is

lp(λ) = l(λ, ν̂λ) .

The left plot of figure 3.4 shows he contours of l(λ, ν) for the simulated data set of Exam-
ple 3.6. The traces of lp(λ) and lp(ν) are also shown using the dashed blue and red lines
respectively (the trace of lp(λ) is the curve (λ, ν̂λ)). Both traces pass through the point

(λ̂, ν̂). This demonstrates that the maximum profile likelihood estimates are the same as
the maximum likelihood estimates. The middle and right plots show lp(λ) and lp(ν) and

the dashed horizontal lines are at lp(λ̂)− χ2
1,0.95/2 and lp(ν̂)− χ2

1,0.95/2, respectively. Those
lines define the approximate 95% confidence intervals for λ and ν based on wp(λ) and wp(ν),
respectively. The confidence interval for ν is (1.151, 2.240) and for λ is (0.406, 1.139).

Despite the aforementioned nice properties of the profile likelihood, lp(ψ) is not a genuine
log-likelihood and the profile score function ∂lp(ψ)/∂ψ does not generally have zero null

expectation. The use of lp(ψ) is the same as regarding λ known and equal to λ̂ψ and this is
certainly unreasonable if the data do not contain enough information on λ, which usually is
the case when the dimension of λ is large. More formally, if the dimension of the nuisance
parameters is fixed then the null expectation of the profile score for ψ is of order O (1),
whereas, when the dimension of λ increases with n, then that expectation is of order O(n)
and ψ̂ is then inconsistent. Various modifications of the profile likelihood have been proposed
in the literature that can, at varying degrees, compensate for the limited knowledge on ψ.
The simplest of those is the approximate conditional log-likelihood (Cox and Reid, 1987)
which takes the form

la(ψ) = lp(ψ)−
1

2
log

���jλλ(ψ, λ̂ψ)
��� ,

and has been derived for the case of orthogonal parameterizations as an approximation of the
log-likelihood based on the distribution of Y given λ̂. Unfortunately, la(ψ) is not invariant
under interest-respecting reparameterizations and the addition of an extra, in general rather
complicated, term on the right hand side is required to achieve this. When the parameteriza-
tion is orthogonal the contribution of this extra term becomes small. Nevertheless, plotting
both la(ψ) and lp(ψ) could be a first step to investigate the effect of the estimation of the
nuisance parameters on inferences.

3.8.2 Orthogonal parameterization

If for a particular model, it was possible to write

l(β) = l1(ψ) + l2(λ) ,
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then λ̂ψ = λ̂, lp(ψ) = l1(ψ) and jp(ψ) = −∂l1(ψ)/∂ψ∂ψT and inferences on ψ would be very
convenient. We can get close to this situation by using an orthogonal parameterization. The
parameters ψ and λ are called orthogonal if iψλ(ψ,λ) = 0.

The main consequence of parameter orthogonality is that ψ̂ and λ̂ are asymptotically
closer to independence. To justify this statement consider the case p = 2 and q = 1. An
expansion of l(ψ,λ) around (ψ̂, λ̂) gives

l(ψ,λ) = l(ψ̂, λ̂) + (ψ − ψ̂)lψ(ψ̂, λ̂) + (λ− λ̂)lλ(ψ̂, λ̂) (3.54)

+
1

2

�
(ψ − ψ̂)2lψψ(ψ̂, λ̂) + 2(ψ − ψ̂)(λ− λ̂)lψλ(ψ̂, λ̂) + (λ− λ̂)2lλλ(ψ̂, λ̂)

�

+Op

�
n−1/2

�

Now, noting that lψ(ψ̂, λ̂) = 0 and lλ(ψ̂, λ̂) = 0 and denoting by ĵψλ ≡ jψλ(ψ̂, λ̂), ĵλλ ≡
jλλ(ψ̂, λ̂), etc., direct differentiation of (3.54) with respect to λ gives

lλ(ψ,λ) = −(ψ − ψ̂)ĵψλ − (λ− λ̂)ĵλλ +Op (1) .

Because lλ(ψ, λ̂ψ) = 0, we get

λ̂ψ − λ̂ = (ψ̂ − ψ)
ĵψλ

ĵλλ
+Op

�
n−1

�
.

But j(ψ,λ) = i(ψ,λ) +Op
�
n1/2

�
and so the above expression can be written as

λ̂ψ − λ̂ = (ψ̂ − ψ)
îψλ

îλλ
+Op

�
n−1

�
,

which becomes λ̂ψ − λ̂ = Op(n−1) when ψ and λ are orthogonal. Thus when ψ and λ are

orthogonal λ̂ψ varies only slowly in ψ in a neighbourhood of ψ̂. Furthermore, by (3.54), when
ψ and λ are orthogonal, we have

l(ψ,λ) = c− 1

2
(ψ − ψ̂)ĵψψ − 1

2
(λ− λ̂)ĵλλ +Op

�
n−1/2

�

= l1(ψ) + l2(λ) +Op

�
n−1/2

�
,

because c = l(ψ̂, λ̂) is parameter constant and thus can be absorbed in either function l1(ψ)
or the function l2(ψ). Hence if ψ and λ are orthogonal, for (ψ,λ) in a neighbourhood of (ψ̂, λ̂)
(of radius Op

�
n−1/2

�
) the log-likelihood is almost separable.
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