
On apsects of statistical modelling
Preliminary material

April 1, 2025

Ioannis Kosmidis
University of Warwick

ioannis.kosmidis@warwick.ac.uk

https://ikosmidis.com


Table of contents

Introduction 3
Typos and issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Linear models 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Least squares estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Estimation of 𝜎2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Comparing linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Bayesian inference for linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Generalized linear models 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Comparing generalized linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Models with an unknown dispersion parameter . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Residuals and Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 R practicals 20
3.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 trees data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 salinity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 shuttle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 bliss data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 23

2



Introduction

In order to get the most out of the AUEB MSc short course “On aspects of statistical modelling”, students
should have, at the start of the module, a sound knowledge of the principles of statistical inference and the
theory of linear and generalised linear models. Students should also have some experience of statistical
modelling in R.

The following reading and activities are recommended to all students to (re)-familiarise themselves with
those topics.

Linear and generalised linear models: A student who has covered Davison (2003, Chapter 8 and
10.1-10.4) will be more than adequately prepared for the short course. For students without access to
this book, the main theory is repeated in the current set of preliminary notes. The inference methodology
described is largely based on classical statistical theory. Although prior experience of Bayesian statistical
modelling would be helpful, it will not be assumed.

Preliminary material exercises: Nine exercises are included in the current preliminary material.

R practicals: Some practical exercises are also provided at the end of these notes to enable students to
familiarise themselves with statistical modelling in R.

Typos and issues
You can report and suggest fixes to typos and issues by email to ioannis.kosmidis@warwick.ac.uk.
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Chapter 1

Linear models

1.1 Introduction
In practical applications, we often distinguish between a response variable and a group of explanatory
variables (or covariates). The aim is to determine the pattern of dependence of the response variable on
the explanatory variables. We denote the 𝑛 observations of the response variable by 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)⊤.
In a statistical model, these are assumed to be observations of random variables 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑛)⊤.
Associated with each 𝑦𝑖 is a vector 𝑥𝑖 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)⊤ of values of 𝑝 explanatory variables.

Linear models are those for which the relationship between the response and explanatory variables is of
the form

E(𝑌𝑖 ∣ 𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑝𝑥𝑖𝑝

=
𝑝

∑
𝑗=0

𝑥𝑖𝑗𝛽𝑗 (where we define 𝑥𝑖0 = 1)

= 𝑥⊤
𝑖 𝛽

= [𝑋𝛽]𝑖 (𝑖 = 1, … , 𝑛) ,

(1.1)

where

E(𝑌 ∣ 𝑋) = ⎡⎢
⎣

E(𝑌1 ∣ 𝑥1)
⋮

E(𝑌𝑛 ∣ 𝑥𝑛)
⎤⎥
⎦

and 𝑋 = ⎡⎢
⎣

𝑥⊤
1
⋮

𝑥⊤
𝑛

⎤⎥
⎦

= ⎡⎢
⎣

1 𝑥11 ⋯ 𝑥1𝑝
⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑝

⎤⎥
⎦

,

and 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)⊤ is a vector of fixed but unknown parameters describing the dependence of 𝑌𝑖 on
𝑥𝑖. The four ways of describing the linear model in (1.1) are equivalent, but the most economical is the
matrix form

E(𝑌 ∣ 𝑋) = 𝑋𝛽 . (1.2)

The 𝑛 × (𝑝 + 1) matrix 𝑋 consists of known (observed) constants and is called the model matrix. The
𝑖th row of 𝑋 is 𝑥⊤

𝑖 , the explanatory data corresponding to the 𝑖th observation of the response. The 𝑗th
column of 𝑋 contains the 𝑛 observations of the 𝑗th explanatory variable.

Example 1.1. The null model
E(𝑌𝑖) = 𝛽0 (𝑖 = 1, … , 𝑛)

has

𝑋 =
⎡
⎢⎢
⎣

1
1
⋮
1

⎤
⎥⎥
⎦

and 𝛽 = [𝛽0
𝛽1

] .

Example 1.2. The simple linear regression

E(𝑌𝑖 ∣ 𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 (𝑖 = 1, … , 𝑛)
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has

𝑋 =
⎡
⎢⎢
⎣

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎤
⎥⎥
⎦

and 𝛽 = [𝛽0
𝛽1

] .

Example 1.3. The polynomial regression model

E(𝑌𝑖 ∣ 𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖 + … + 𝛽𝑝𝑥𝑝

𝑖 (𝑖 = 1, … , 𝑛)

has

𝑋 =
⎡
⎢⎢
⎣

1 𝑥1 𝑥2
1 ⋯ 𝑥𝑝

1
1 𝑥2 𝑥2

2 ⋯ 𝑥𝑝
2

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 𝑥2

𝑛 ⋯ 𝑥𝑝
𝑛

⎤
⎥⎥
⎦

and 𝛽 =
⎡
⎢⎢
⎣

𝛽0
𝛽1
⋮

𝛽𝑝

⎤
⎥⎥
⎦

.

Example 1.4. The multiple regression model

E(𝑌𝑖 ∣ 𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑝𝑥𝑖𝑝 (𝑖 = 1, … , 𝑛)

has

𝑋 =
⎡
⎢⎢
⎣

1 𝑥11 𝑥12 ⋯ 𝑥1𝑝
1 𝑥21 𝑥22 ⋯ 𝑥2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

⎤
⎥⎥
⎦

and 𝛽 =
⎡
⎢⎢
⎣

𝛽0
𝛽1
⋮

𝛽𝑝

⎤
⎥⎥
⎦

.

Strictly, the only requirement for a model to be linear is that the relationship between the response
variables, 𝑌 , and any explanatory variables can be written in the form (1.2). No further specification of
the joint distribution of 𝑌1, … , 𝑌𝑛 is required. However, statistical inference about the model parameters
is conveniently performed under the normal linear model, which involves three further assumptions:

1. 𝑌1, … , 𝑌𝑛 are independent random variables conditionally on the covariates vectors 𝑥1, … , 𝑥𝑛.
2. Conditionally on the covariates vectors 𝑥1, … , 𝑥𝑛, 𝑌1, … , 𝑌𝑛 are normally distributed.
3. var(𝑌1 ∣ 𝑥1) = var(𝑌2 ∣ 𝑥1) = ⋯ = var(𝑌𝑛) = 𝜎2 or, equivalently, 𝑌1, … , 𝑌𝑛 are homoscedastic.

With these assumptions the linear model completely specifies the distribution of 𝑌 , in that 𝑌1, … , 𝑌𝑛 are
independent and

𝑌𝑖 ∣ 𝑥𝑖 ∼ N (𝑥⊤
𝑖 𝛽, 𝜎2) (𝑖 = 1, … , 𝑛).

Another way of writing this is
𝑌𝑖 = 𝑥⊤

𝑖 𝛽 + 𝜖𝑖 (𝑖 = 1, … , 𝑛) ,
where 𝜖1, … , 𝜖𝑛 are independent and identically distributed (IID) random variables with 𝜖1 ∼ N(0, 𝜎2).
The normal linear model can now be expressed in matrix form as

𝑌 = 𝑋𝛽 + 𝜖 , (1.3)

where 𝜖 = (𝜖1, … , 𝜖𝑛)⊤ has a multivariate normal distribution with mean vector 0 and variance covariance
matrix 𝜎2𝐼𝑛, where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix

𝐼𝑛 =
⎡
⎢⎢
⎣

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎤
⎥⎥
⎦

.

This is because var(𝜖𝑖) = 𝜎2, and 𝜖1, … , 𝜖𝑛 are independent, which implies that cov(𝜖𝑖, 𝜖𝑗) = 0 (𝑖, 𝑗 =
1, … , 𝑛).
It follows from (1.3) that the distribution of 𝑌 is multivariate normal with mean vector 𝑋𝛽 and variance
covariance matrix 𝜎2𝐼𝑛, that is 𝑌 ∼ N(𝑋𝛽, 𝜎2𝐼𝑛).
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1.2 Least squares estimation
The regression coefficients 𝛽0, … , 𝛽𝑝 describe the pattern by which the response is associated with the
explanatory variables. We use the observed response values 𝑦1, … , 𝑦𝑛 to estimate that association.

In least squares estimation, roughly speaking, we choose ̂𝛽, the estimates of 𝛽, to make the estimated
means ̂E(𝑌 ∣ 𝑋) = 𝑋 ̂𝛽 as close as possible to the observed values 𝑦, where closeness is determined in
terms of the sum of squared errors. In other words, we seek ̂𝛽 that minimises the sum of squares

𝑛
∑
𝑖=1

{𝑦𝑖 − E(𝑌𝑖 ∣ 𝑥𝑖)}
2 =

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2

=
𝑛

∑
𝑖=1

(𝑦𝑖 −
𝑝

∑
𝑗=0

𝑥𝑖𝑗𝛽𝑗)
2

,
(1.4)

with respect to 𝛽 = (𝛽0, … , 𝛽𝑝)⊤.

Exercise 1.1 (Normal equations). Differentiate the sum of squares in (1.4) with respect to 𝛽𝑘 (𝑘 =
0, … , 𝑝), to show that ̂𝛽 should satisfy

𝑋⊤𝑋 ̂𝛽 = 𝑋⊤𝑦 . (1.5)

The least squares estimates ̂𝛽 are the solutions to the set of 𝑝 + 1 simultaneous linear equations in (1.5),
which are known as the normal equations. If 𝑋⊤𝑋 is invertible (as it usually is) then the least squares
estimates are given by

̂𝛽 = (𝑋⊤𝑋)−1𝑋⊤𝑦 .
The corresponding fitted values are

̂𝑦 = 𝑋 ̂𝛽 = 𝑋(𝑋⊤𝑋)−1𝑋⊤𝑦
⇒ ̂𝑦𝑖 = 𝑥⊤

𝑖 ̂𝛽 (𝑖 = 1, … , 𝑛) .

The matrix 𝐻 = 𝑋(𝑋⊤𝑋)−1𝑋⊤ is typically called the hat matrix, because ̂𝑦 = 𝐻𝑦, that is 𝐻 “puts a
hat” on 𝑦. The residuals are

𝑒 = 𝑦 − ̂𝑦 = 𝑦 − 𝑋 ̂𝛽 = (𝐼𝑛 − 𝐻)𝑦
⇒ 𝑒𝑖 = 𝑦𝑖 − 𝑥⊤

𝑖 ̂𝛽 (𝑖 = 1, … , 𝑛) .

The residuals describe the variability in the observed responses 𝑦1, … , 𝑦𝑛, which has not been explained
by the linear model. The residual sum of squares or deviance for a linear model is defined to be

𝐷 =
𝑛

∑
𝑖=1

𝑒2
𝑖 =

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 ̂𝛽)

2
,

and is the minimum value that the sum of squared errors in (1.4) attains.

Exercise 1.2 (Properties of the least squares estimator).

1. Show that ̂𝛽 is multivariate normal with mean E( ̂𝛽 ∣ 𝑋) = 𝛽, and variance covariance matrix
var( ̂𝛽 ∣ 𝑋) = 𝜎2(𝑋⊤𝑋)−1.

2. Assuming that 𝜖1, … , 𝜖𝑛 are independent and identically distributed with 𝜖1 ∼ N(0, 𝜎2) , show that
the least squares estimate ̂𝛽 is also the maximum likelihood estimate. To do that start by showing
that the likelihood for the normal linear model is

𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝛽, 𝜎2) = (2𝜋𝜎2)− 𝑛
2 exp (− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2) . (1.6)
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1.3 Estimation of 𝜎2

In addition to the linear coefficients 𝛽0, … , 𝛽𝑝 estimated using least squares, we also need to estimate the
error variance 𝜎2, which represents the variability of the observations about their mean.

We can estimate 𝜎2 using maximum likelihood. Maximising (1.6) with respect to 𝛽 and 𝜎2 gives

𝜎̂2 = 𝐷
𝑛 = 1

𝑛
𝑛

∑
𝑖=1

𝑒2
𝑖 .

Under the assumptions of the normal linear model, 𝐷 is independent of ̂𝛽 and

𝐷
𝜎2 ∼ 𝜒2

𝑛−𝑝−1 .

Hence,
E(𝜎̂2) = 𝑛 − 𝑝 − 1

𝑛 𝜎2 .

As a result, the maximum likelihood estimator for 𝜎2 is biased for fixed 𝑝, and is only asymptotically
unbiased because (𝑛 − 𝑝 − 1)/𝑛 → 1 as 𝑛 → ∞. For this reason, we usually prefer to use the unbiased
estimator of 𝜎2

𝑠2 = 𝐷
𝑛 − 𝑝 − 1 = 1

𝑛 − 𝑝 − 1
𝑛

∑
𝑖=1

𝑒2
𝑖 .

The denominator 𝑛 − 𝑝 − 1 is the number of observations minus the number of coefficients in the model,
and is called the degrees of freedom of the model. We estimate the error variance by the deviance divided
by the degrees of freedom.

1.4 Inference
From the distribution of ̂𝛽 under the normal linear model (see Exercise 1.2), it follows that

̂𝛽𝑘 − 𝛽𝑘
𝜎[(𝑋⊤𝑋)−1]1/2

𝑘𝑘
∼ N(0, 1) (𝑘 = 0, … , 𝑝) .

Replacing the unknown parameter 𝜎 with its estimate 𝑠, the definition of the 𝑡 distribution gives that

𝑇𝑘 =
̂𝛽𝑘 − 𝛽𝑘

𝑠[(𝑋⊤𝑋)−1]1/2
𝑘𝑘

∼ 𝑡𝑛−𝑝−1 .

Hence, 𝑇𝑘 is a pivotal quantity (function of the random variables and parameters, whose distribution
does not depend on the parameters), and can be used for constructing inferences about 𝛽𝑘 in the form
of confidence intervals and test of hypotheses of the form 𝐻0 ∶ 𝛽𝑘 = 𝑏.

The denominator 𝑠.𝑒.( ̂𝛽𝑘) = 𝑠[(𝑋⊤𝑋)−1]1/2
𝑘𝑘 is called the estimated standard error for ̂𝛽𝑘.

The sampling distributions of the fitted values and residuals can be obtained, straightforwardly as

̂𝑦 ∣ 𝑋 ∼ N(𝑋𝛽, 𝜎2𝐻) ,

and
𝑒 ∣ 𝑋 ∼ N(0, 𝜎2(𝐼𝑛 − 𝐻)) .

The latter expression allows us to calculate standardised residuals, for comparison purposes, as

𝑟𝑖 = 𝑒𝑖
𝑠(1 − ℎ𝑖𝑖)1/2 ,

where ℎ𝑖𝑖 is the 𝑖th diagonal element of the hat matrix 𝐻.
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1.5 Prediction
We estimate the mean, 𝑥⊤

+𝛽, for 𝑌 at values of the explanatory variables given by 𝑥⊤
+ = (1, 𝑥+1, … , 𝑥+𝑝)⊤,

which may or may not match a set of values observed in the data, using

̂𝑌+ = 𝑥⊤
+ ̂𝛽 .

Then,
̂𝑌+ ∣ 𝑋, 𝑥+ ∼ 𝑁(𝑥⊤

+𝛽, 𝜎2ℎ++) ,
where ℎ++ = 𝑥⊤

+(𝑋⊤𝑋)−1𝑥+. Hence, confidence intervals for predictive means can be derived using

̂𝑌+ − 𝑥⊤
+𝛽

𝑠ℎ1/2
++

∼ 𝑡𝑛−𝑝−1 .

For predicting the actual value 𝑌+ = 𝑥⊤
+𝛽 + 𝜖+, the predictor ̂𝑌+ is also sensible, as E( ̂𝑌+ − 𝑌+) = 0. Now,

̂𝑌+ − 𝑌+ ∣ 𝑋, 𝑥+ ∼ 𝑁(0, 𝜎2(1 + ℎ++)) ,

because ̂𝑌+ and 𝑌+ are independent. Hence, predictive confidence intervals can be derived using

̂𝑌+ − 𝑌+
𝑠(1 + ℎ++)1/2 ∼ 𝑡𝑛−𝑝−1.

1.6 Comparing linear models
A pair of nested linear models can be compared using a generalised likelihood ratio test. Nesting implies
that the simpler model (𝐻0) is a special case of the more complex model (𝐻1). In practice, this usually
means that the explanatory variables present in 𝐻0 are a subset of those present in 𝐻1. Let Θ(1) be
the unrestricted parameter space under 𝐻1 and Θ(0) be the parameter space corresponding to model 𝐻0,
which sets some of the coefficients to zero.

Without loss of generality, we can think of 𝐻1 as the model

E(𝑌𝑖 ∣ 𝑥𝑖) =
𝑝

∑
𝑗=0

𝑥𝑖𝑗𝛽𝑗 (𝑖 = 1, … , 𝑛)

with 𝐻0 being the same model with 𝛽𝑞+1 = 𝛽𝑞+2 = ⋯ = 𝛽𝑝 = 0.

A generalised likelihood ratio test of 𝐻0 against 𝐻1 uses a test statistic of the form

𝑇 =
max(𝛽,𝜎2)∈Θ(1) 𝑓𝑌 (𝑦; 𝛽, 𝜎2)
max(𝛽,𝜎2)∈Θ(0) 𝑓𝑌 (𝑦; 𝛽, 𝜎2) .

Then, 𝐻0 is rejected in favour of 𝐻1 when 𝑇 > 𝑘, where where 𝑘 is determined by 𝛼, the size of the test.

For a normal linear model,

𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝛽, 𝜎2) = (2𝜋𝜎2)− 𝑛
2 exp (− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2) .

This is maximised with respect to (𝛽, 𝜎2) for 𝛽 ∶= ̂𝛽 and 𝜎2 ∶= 𝜎̂2 = 𝐷/𝑛. So,

max
𝛽,𝜎2

𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝛽, 𝜎2) = (2𝜋𝐷/𝑛)− 𝑛
2 exp (− 𝑛

2𝐷
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 ̂𝛽)2)

= (2𝜋𝐷/𝑛)− 𝑛
2 exp (−𝑛

2 )
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Exercise 1.3 (Likelihood ratio statistic and 𝐹 tests in the normal linear model). Denote the deviances
under models 𝐻0 and 𝐻1 as 𝐷0 and 𝐷1, respectively. Show that the likelihood ratio test statistic 𝑇 above
can be written as

𝑇 = (1 + 𝑝 − 𝑞
𝑛 − 𝑝 − 1𝐹)

𝑛/2
,

where
𝐹 = (𝐷0 − 𝐷1)/(𝑝 − 𝑞)

𝐷1/(𝑛 − 𝑝 − 1) .

Hence, the simpler model 𝐻0 is rejected in favour of the more complex model 𝐻1 if 𝐹 is ‘too large’.

As we have required 𝐻0 to be nested in 𝐻1 then, under 𝐻0, 𝐹 has an F distribution with 𝑝 − 𝑞 degrees
of freedom in the numerator and 𝑛 − 𝑝 − 1 degrees of freedom in the denominator.

To see this, note the analysis of variance decomposition

𝐷0
𝜎2 = 𝐷0 − 𝐷1

𝜎2 + 𝐷1
𝜎2 .

We know from Section 1.3 that, under 𝐻0, 𝐷1/𝜎2 has a 𝜒2
𝑛−𝑝−1 distribution and 𝐷0/𝜎2 has a 𝜒2

𝑛−𝑞
distribution. It is also true (although we do not show it here) that under 𝐻0, (𝐷0 −𝐷1)/𝜎2 and 𝐷0/𝜎2 are
independent. From the properties of the chi-squared distribution, it follows that under 𝐻0, (𝐷0 −𝐷1)/𝜎2

has a 𝜒2
𝑝−𝑞 distribution, and 𝐹 has a 𝐹𝑝−𝑞,𝑛−𝑝−1 distribution.

Hence, 𝐻0 is rejected in favour of 𝐻1 when 𝐹 > 𝑘 where 𝑘 is the 100(1 − 𝛼)% point of the 𝐹𝑝−𝑞,𝑛−𝑝−1
distribution.

1.7 Model checking
Confidence intervals and hypothesis tests for normal linear models may be unreliable if some of the model
assumptions are not justified. In particular, we have made four assumptions about the distribution of
𝑌1, … , 𝑌𝑛.

1. The model correctly describes the relationship between E(𝑌𝑖) and the explanatory variables.

2. 𝑌1, … , 𝑌𝑛 are normally distributed.

3. var(𝑌1) = var(𝑌2) = ⋯ = var(𝑌𝑛).
4. 𝑌1, … , 𝑌𝑛 are independent random variables.

Evidence of departures from the above assumptions can be explored using plots of raw or standardised
residuals.

1. If a plot of the residuals against the values of a potential explanatory variable reveals a pattern,
then this suggests that the explanatory variable, or perhaps some function of it, should be included
in the model.

2. A simple check for non-normality is obtained using a normal probability plot of the ordered residuals.
The plot should look like a straight line, with obvious curves suggesting departures from normality.

3. A simple check for non-constant variance is obtained by plotting the residuals 𝑟1, … , 𝑟𝑛 against the
corresponding fitted values 𝑥⊤

𝑖 ̂𝛽 (𝑖 = 1, … , 𝑛). The plot should look like a random scatter. If any
patterns are apparent, for example increasing or decreasing variance as the fitted values increase
(‘funnelling’ in the residual plot), then this is evidence against the homoscedasticity assumptions.

4. Independence is typically difficult to validate. Nevertheless, if observations have been collected
in serial order, serial correlation may be detected by a lagged scatterplot or correlogram of the
residuals.
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Another place where residual diagnostics are useful is in assessing influence. An observation is influential
if deleting it would lead to substantial changes in the estimates of model parameters. Cook’s distance is
a measure of the change in ̂𝛽 when observation 𝑗 is omitted from the dataset, and is defined as

𝐶𝑗 =
∑𝑛

𝑖=1 ( ̂𝑦(𝑗)
𝑖 − ̂𝑦𝑖)

2

𝑝𝑠2

where ̂𝑦(𝑗)
𝑖 is the fitted value for observation 𝑖, calculated using the least squares estimates obtained from

the modified data set with the 𝑗th observation deleted. A rule of thumb is that values of 𝐶𝑗 greater than
8/(𝑛 − 2𝑝) indicate influential points. It can be shown that

𝐶𝑗 = 𝑟2
𝑗 ℎ𝑗𝑗

𝑝(1 − ℎ𝑗𝑗)
so influential points have either a large standardised residual (unusual 𝑦 value) or large ℎ𝑗𝑗. The quantity
ℎ𝑗𝑗 is called the leverage, and is a measure of how unusual (relative to the other values in the data set)
the explanatory data for the 𝑗th observation are.

Exercise 1.4 (Basic properties of the hat matrix and the leverage).

1. Show that 𝐻 is idempotent.

2. Show that ℎ𝑖𝑖 ∈ (0, 1) and that tr(𝐻) = ∑𝑛
𝑖=1 ℎ𝑖𝑖 = 𝑝, where tr(𝐻) denotes the trace of the matrix

𝐻.

1.8 Bayesian inference for linear models
Bayesian inference for the parameters 𝛽 and 𝜎2 of the normal linear model requires computation of the
posterior density. Bayes theorem gives us

𝑓(𝛽, 𝜎2 ∣ 𝑦, 𝑋) ∝ 𝑓(𝑦 ∣ 𝑋, 𝛽, 𝜎2)𝑓(𝛽, 𝜎2) ,
where the likelihood 𝑓(𝑦 ∣ 𝑋, 𝛽, 𝜎2) is given by (1.6) as

𝑓(𝑦 ∣ 𝑋, 𝛽, 𝜎2) = (2𝜋𝜎2)− 𝑛
2 exp (− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 𝛽)2) .

Posterior computation is straightforward if the prior density 𝑓(𝛽, 𝜎2) is conjugate to the likelihood, which,
for a normal linear model, is achieved by the prior decomposition

𝜎−2 ∼ Gamma(𝑎0, 𝑏0) and 𝛽 | 𝜎2 ∼ N(𝜇0, 𝜎2𝑉0) ,
where 𝑎0, 𝑏0, 𝜇0, and 𝑉0 are hyperparameters, whose values are chosen to reflect prior uncertainty about
the linear model parameters 𝛽 and 𝜎2.

With this prior structure, the corresponding posterior distributions are given by

𝜎−2 ∼ Gamma(𝑎0 + 𝑛/2, 𝑏) and 𝛽 | 𝜎2 ∼ N(𝜇, 𝜎2𝑉 ) ,
where 𝑉 = (𝑋⊤𝑋 + 𝑉 −1

0 )−1, 𝜇 = 𝑉 (𝑋⊤𝑦 + 𝑉 −1
0 𝜇0) and

𝑏 = 𝑏0 + 1
2 (𝑦⊤𝑦 + 𝜇0𝑉 −1

0 𝜇0 − 𝜇𝑉 −1𝜇)

= 𝑏0 + 1
2 {(𝑛 − 𝑝 − 1)𝑠2 + [𝜇0 − ̂𝛽]

⊤
[𝑉0 + (𝑋⊤𝑋)−1]−1 [𝜇0 − ̂𝛽]} ,

if 𝑋⊤𝑋 is non-singular, where ̂𝛽 and 𝑠2 are the classical unbiased estimators for 𝛽 and 𝜎2.

In applications where prior information about the model parameters 𝛽 and 𝜎2 is weak, it is conventional
to use the vague prior specification given by the improper prior density

𝑓(𝛽, 𝜎2) ∝ 𝜎−2. (1.7)

This corresponds to the conjugate prior structure above with 𝑎0 = −(𝑝 + 1), 𝑏0 = 0 and 𝑉 −1
0 = 0.
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Exercise 1.5 (Links between Bayesian and frequentist inference for the normal linear model).

1. Show that, for the vague prior specification in (1.7), the posterior mean of 𝛽 is the least squares
estimator ̂𝛽. Show also that, a posteriori, 1/𝜎2 has the distribution of 𝑋2/[𝑠2(𝑛−𝑝 −1)], where 𝑋2

has a 𝜒2
𝑛−𝑝−1 distribution. Hence, show that posterior probability intervals for 𝜎2 are equivalent to

confidence intervals based on the sampling distribution of 𝑠2.

2. For a longer exercise, show that (𝛽−𝜇)/𝜎 has a multivariate normal posterior marginal distribution,
independent of 𝜎2, and hence that posterior probability intervals for a coefficient 𝛽𝑘 are equivalent
to the confidence intervals based on the sampling distribution of 𝑇𝑘 derived in Section 1.4 above.
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Generalized linear models

2.1 Introduction
The generalized linear model extends the normal linear model defined in Section 1.1 to allow a more
flexible family of probability distributions.

Suppose that 𝑦1, … , 𝑦𝑛 are observations on random variables 𝑌1, … , 𝑌𝑛 that are conditionally independent
given 𝑥1, … , 𝑥𝑛, where 𝑥𝑖 is a 𝑝-vector of covariates. A generalized linear model (GLM) assumes that,
conditionally on 𝑥𝑖, 𝑌𝑖 has an exponential family distirbution with density or probability mass function

𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝜃, 𝜙) = exp (
𝑛

∑
𝑖=1

𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙𝑖

+
𝑛

∑
𝑖=1

𝑐(𝑦𝑖, 𝜙𝑖)) , (2.1)

where 𝜃 = (𝜃1, … , 𝜃𝑛)⊤ is the collection of canonical parameters and 𝜙 = (𝜙1, … , 𝜙𝑛)⊤ is the collection
of dispersion parameters (where they exist). Commonly, the dispersion parameters are known up to, at
most, a single common unknown 𝜎2, and we write 𝜙𝑖 = 𝜎2/𝑚𝑖 where the 𝑚𝑖 represent known weights.

The distribution of the response variable 𝑌𝑖 depends on the explanatory data 𝑥𝑖 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)⊤

through the linear predictor 𝜂𝑖, where

𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … + 𝛽𝑝𝑥𝑖𝑝

=
𝑝

∑
𝑗=0

𝑥𝑖𝑗𝛽𝑗

= 𝑥⊤
𝑖 𝛽

= [𝑋𝛽]𝑖 (𝑖 = 1, … , 𝑛) ,
in an exactly analagous fashion to the linear model in Section 1.1.

The distribution of 𝑌 is linked to the linear predictor 𝜂 through the link function 𝑔 as

𝜂𝑖 = 𝑔(𝜇𝑖) (𝑖 = 1, … , 𝑛) ,
where 𝜇𝑖 = 𝐸(𝑌𝑖 ∣ 𝑥𝑖).
In principle, the link function 𝑔 can be any one-to-one differentiable function. However, we note that
𝜂𝑖 can in principle take any value in ℜ, because we make no restriction on possible values taken by
explanatory variables or model parameters. However, for some exponential family distributions 𝜇𝑖 is
restricted. For example, for the Poisson distribution 𝜇𝑖 ∈ ℜ+; for the Bernoulli distribution 𝜇𝑖 ∈ (0, 1).
If 𝑔 is not chosen carefully, then there may exist a combination of 𝑥𝑖 and 𝛽 such that 𝜂𝑖 ≠ 𝑔(𝜇𝑖) for any
possible value of 𝜇𝑖. Most common choices of link function map the set of allowed values for 𝜇𝑖 onto ℝ.

Recall that for a random variable 𝑌 with an exponential family distribution, 𝐸(𝑌 ) = 𝑏′(𝜃). Hence, for a
generalized linear model

𝜇𝑖 = 𝐸(𝑌𝑖 ∣ 𝑥𝑖) = 𝑏′(𝜃𝑖) (𝑖 = 1, … , 𝑛) .

12
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So,
𝜃𝑖 = 𝑏′−1(𝜇𝑖) (𝑖 = 1, … , 𝑛) ,

and, because 𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑥⊤
𝑖 𝛽,

𝜃𝑖 = 𝑏′−1(𝑔−1(𝑥⊤
𝑖 𝛽)) (𝑖 = 1, … , 𝑛) . (2.2)

Hence, we can express the joint density (2.1) in terms of the coefficients 𝛽, and for observed data 𝑦, this
is the likelihood 𝑓𝑌 (𝑦; 𝛽, 𝜙) about 𝛽.

Note that considerable simplification is obtained in (2.1) and (2.2) if the functions 𝑔 and 𝑏′−1 are identical.
Then,

𝜃𝑖 = 𝑥⊤
𝑖 𝛽 (𝑖 = 1, … , 𝑛) .

The link function
𝑔(𝜇) = 𝑏′−1(𝜇)

is called the canonical link function. Under the canonical link, the canonical parameter is equal to the
linear predictor.

Table 2.1: Canonical link functions

Distribution Normal Poisson Bernoulli/Binomial
𝑏(𝜃) 1

2 𝜃2

𝑏′(𝜃) = 𝜇 𝜃 exp 𝜃
1+exp 𝜃

𝑏′−1(𝜇) = 𝜃 𝜇 log 𝜇
1−𝜇

Canonical link 𝑔(𝜇) = 𝜇 𝑔(𝜇) = log 𝜇 𝑔(𝜇) = log 𝜇
1−𝜇

Name of link Identity link Log link Logit link

Exercise 2.1 (GLM characteristics). Complete Table 2.1.

Clearly the linear model considered in Chapter 1 is also a generalized linear model where 𝑌1, … , 𝑌𝑛
are independent and normally distributed, the explanatory variables enter the model through the linear
predictor

𝜂𝑖 = 𝑥⊤
𝑖 𝛽 (𝑖 = 1, … , 𝑛) ,

and the link between 𝐸(𝑌 ) = 𝜇 and the linear predictor 𝜂 is through the (canonical) identity link function

𝜇𝑖 = 𝜂𝑖 (𝑖 = 1, … , 𝑛) .

2.2 Maximum likelihood estimation
As usual, we maximize the log likelihood function which, from (2.1), can be written as

log 𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝛽, 𝜙) =
𝑛

∑
𝑖=1

𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙𝑖

+
𝑛

∑
𝑖=1

𝑐(𝑦𝑖, 𝜙𝑖) , (2.3)

and depends on 𝛽 through expression (2.2) for the canonical parameters.

The maximum likelihood estimate ̂𝛽 satisfies 𝑢( ̂𝛽) = 0 where 𝑢 is the score vector whose components are
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given by
𝑢𝑘(𝛽) ≡ 𝜕

𝜕𝛽𝑘
log 𝑓𝑌 (𝑦; 𝛽)

=
𝑛

∑
𝑖=1

𝜕
𝜕𝛽𝑘

[𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙𝑖

]

=
𝑛

∑
𝑖=1

𝜕
𝜕𝜃𝑖

[𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙𝑖

] 𝜕𝜃𝑖
𝜕𝜇𝑖

𝜕𝜇𝑖
𝜕𝜂𝑖

𝜕𝜂𝑖
𝜕𝛽𝑘

=
𝑛

∑
𝑖=1

𝑦𝑖 − 𝑏′(𝜃𝑖)
𝜙𝑖

𝑥𝑖𝑘
𝑏″(𝜃𝑖)𝑔′(𝜇𝑖)

=
𝑛

∑
𝑖=1

𝑦𝑖 − 𝜇𝑖
var(𝑌𝑖 ∣ 𝑥𝑖)

𝑥𝑖𝑘
𝑔′(𝜇𝑖)

(𝑘 = 0, … , 𝑝) ,

(2.4)

which depends on 𝛽 through 𝜇𝑖 = 𝐸(𝑌𝑖) and var(𝑌𝑖 ∣ 𝑥𝑖) (𝑖 = 1, … , 𝑛).
The equations 𝑢( ̂𝛽) = 0 are usually non-linear and have no analytic solution. For that reason, we rely on
numerical methods to solve them.

First, we note that the Hessian and Fisher information matrices can be derived directly from (2.4), as

[𝐻(𝛽)]𝑗𝑘 = 𝜕2

𝜕𝛽𝑗𝜕𝛽𝑘
log 𝑓𝑌 (𝑦; 𝛽)

= 𝜕
𝜕𝛽𝑗

𝑛
∑
𝑖=1

𝑦𝑖 − 𝜇𝑖
var(𝑌𝑖 ∣ 𝑥𝑖)

𝑥𝑖𝑘
𝑔′(𝜇𝑖)

=
𝑛

∑
𝑖=1

− 𝜕𝜇𝑖
𝜕𝛽𝑗

var(𝑌𝑖 ∣ 𝑥𝑖)
𝑥𝑖𝑘

𝑔′(𝜇𝑖)
+

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)
𝜕

𝜕𝛽𝑗
[ 𝑥𝑖𝑘

var(𝑌𝑖 ∣ 𝑥𝑖)𝑔′(𝜇𝑖)
] ,

and

[𝐼(𝛽)]𝑗𝑘 = 𝐸(−𝐻(𝛽))𝑗𝑘 =
𝑛

∑
𝑖=1

𝜕𝜇𝑖
𝜕𝛽𝑗

var(𝑌𝑖 ∣ 𝑥𝑖)
𝑥𝑖𝑘

𝑔′(𝜇𝑖)
=

𝑛
∑
𝑖=1

𝑥𝑖𝑗𝑥𝑖𝑘
var(𝑌𝑖 ∣ 𝑥𝑖)𝑔′(𝜇𝑖)2 .

Exercise 2.2 (Fisher information matrix). Show that the Fisher information matrix can be written as

𝐼(𝛽) = 𝑋⊤𝑊𝑋 , (2.5)

where 𝑋 is the model matrix and

𝑊 = diag(𝑤) =
⎡
⎢⎢
⎣

𝑤1 0 ⋯ 0
0 𝑤2 ⋮
⋮ ⋱ 0
0 ⋯ 0 𝑤𝑛

⎤
⎥⎥
⎦

,

where
𝑤𝑖 = 1

var(𝑌𝑖 ∣ 𝑥𝑖)𝑔′(𝜇𝑖)2 (𝑖 = 1, … , 𝑛) .

The Fisher information matrix 𝐼(𝛽) depends on 𝛽 through 𝜇𝑖 and var(𝑌𝑖 ∣ 𝑥𝑖) (𝑖 = 1, … , 𝑛).
The scores in (2.4) may now be written as

𝑢𝑘(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)𝑥𝑖𝑘𝑤𝑖𝑔′(𝜇𝑖)

=
𝑛

∑
𝑖=1

𝑥𝑖𝑘𝑤𝑖𝑧𝑖 (𝑘 = 0, … , 𝑝) ,
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where
𝑧𝑖 = (𝑦𝑖 − 𝜇𝑖)𝑔′(𝜇𝑖) (𝑖 = 1, … , 𝑛) .

Hence,
𝑢(𝛽) = 𝑋⊤𝑊𝑧 . (2.6)

One possible method to solve the 𝑝 simultaneous equations 𝑢(𝛽) = 0 is the Newton-Raphson method. If
𝛽𝑡 is the current estimate of 𝛽, then the next estimate is

𝛽𝑡+1 = 𝛽𝑡 − 𝐻(𝛽𝑡)−1𝑢(𝛽𝑡) . (2.7)

A popular alternative to Newton-Raphson replaces 𝐻(𝛽) in (2.7) with 𝐸(𝐻(𝛽)) = −𝐼(𝛽). If 𝛽𝑡 is the
current estimate of 𝛽, the next estimate is

𝛽𝑡+1 = 𝛽𝑡 + 𝐼(𝛽𝑡)−1𝑢(𝛽𝑡) . (2.8)

The resulting iterative algorithm is called Fisher scoring. Notice that if we substitute (2.5) and (2.6) into
(2.8) we get

𝛽𝑡+1 = 𝛽𝑡 + [𝑋⊤𝑊 𝑡𝑋]−1𝑋⊤𝑊 𝑡𝑧𝑡

= [𝑋⊤𝑊 𝑡𝑋]−1[𝑋⊤𝑊 𝑡𝑋𝛽𝑡 + 𝑋⊤𝑊 𝑡𝑧𝑡]
= [𝑋⊤𝑊 𝑡𝑋]−1𝑋⊤𝑊 𝑡[𝑋𝛽𝑡 + 𝑧𝑡]
= [𝑋⊤𝑊 𝑡𝑋]−1𝑋⊤𝑊 𝑡[𝜂𝑡 + 𝑧𝑡] ,

where 𝜂𝑡, 𝑊 𝑡, and 𝑧𝑡 are 𝜂, 𝑊 and 𝑧 evaluated at 𝛽𝑡.

As is clear, 𝛽𝑡+1 are estimates from a weighted linear regression model of the, so called, working variates
𝜂𝑡 + 𝑧𝑡 on 𝑋 with weights 𝑊 𝑡. Equivalently, 𝛽𝑡+1 minimizes the weighted sum of squares

(𝜂𝑡 + 𝑧𝑡 − 𝑋𝑏)⊤𝑊 𝑡(𝜂𝑡 + 𝑧𝑡 − 𝑋𝑏) =
𝑛

∑
𝑖=1

𝑤𝑡
𝑖 (𝜂𝑡

𝑖 + 𝑧𝑡
𝑖 − 𝑥⊤

𝑖 𝑏)2 ,

with respect to 𝑏.

The Fisher scoring algorithm proceeds as follows:

0. Choose an initial estimate 𝛽0 for �$ and a small constant 𝜖 > 0
For 𝑡 = 0, 1, …, do:

1. Evaluate 𝜂𝑡, 𝑊 𝑡 and 𝑧𝑡 at 𝛽𝑡.
2. Calculate 𝛽𝑡+1 = [𝑋⊤𝑊 𝑡𝑋]−1𝑋⊤𝑊 𝑡[𝜂𝑡 + 𝑧𝑡].
3. If ||𝛽𝑡+1 − 𝛽𝑡|| > 𝜖 then set 𝑡 → 𝑡 + 1 and go to 2.
4. Use 𝛽𝑡+1 as the value for ̂𝛽.

As this algorithm involves iteratively minimising a weighted sum of squares, it is also known as iteratively
(re)weighted least squares.

Recall that the canonical link function is 𝑔(𝜇) = 𝑏′−1(𝜇) and with this link 𝜂𝑖 = 𝑔(𝜇𝑖) = 𝜃𝑖. Then,

1
𝑔′(𝜇𝑖)

= 𝜕𝜇𝑖
𝜕𝜃𝑖

= 𝑏″(𝜃𝑖) 𝑖 = 1, … , 𝑛.

As a result, var(𝑌𝑖 ∣ 𝑥𝑖)𝑔′(𝜇𝑖) = 𝜙𝑖, which does not depend on 𝛽. It follows that 𝜕
𝜕𝛽𝑗

[ 𝑥𝑖𝑘
var(𝑌𝑖∣𝑥𝑖)𝑔′(𝜇𝑖) ] = 0

(𝑗 = 0, … , 𝑝). It follows that 𝐻(𝛽) = −𝐼(𝛽) and, for the canonical link, Newton-Raphson and Fisher
scoring are equivalent.

Exercise 2.3 (IWLS for the normal linear model). For the normal linear model, show that 𝑤𝑖 = 𝜎−2 and
𝑧𝑖 = 𝑦𝑖 − 𝜂𝑖 (𝑖 = 1, … , 𝑛). Hence, show that the Fisher scoring algorithm converges in a single iteration,
from any starting point, to the usual least squares estimate.
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2.3 Inference
Subject to standard regularity conditions, 𝐼(𝛽)1/2( ̂𝛽 − 𝛽) is asymptotically normally distributed with
mean 0 and variance covariance matrix 𝐼𝑝. So, we can treat the normal distribution with mean 𝛽 and
variance 𝐼(𝛽)−1 as the approximate distribution of ̂𝛽.

Hence, standard errors can be estimated as

[𝐼( ̂𝛽)−1]
1
2
𝑘𝑘 = [(𝑋⊤𝑊̂𝑋)−1]

1
2
𝑘𝑘 (𝑘 = 0, … , 𝑝) ,

where 𝑊̂ is 𝑊 evaluated at ̂𝛽 and ̂𝜙𝑖, if var(𝑌𝑖 ∣ 𝑥𝑖) depends on an unknown dispersion parameter.
Section 2.5 discusses the estimation of 𝜙𝑖 in models with unknown dispersion parameter.

The asymptotic distribution of the maximum likelihood estimator can be used to provide asymptotically
valid confidence intervals, and hypeotheris testing procedures, using

̂𝛽𝑘 − 𝛽𝑘

[(𝑋⊤𝑊̂𝑋)−1]
1
2
𝑘𝑘

asymp∼ N(0, 1) .

2.4 Comparing generalized linear models
As with linear models, we can proceed by comparing nested models 𝐻0 and 𝐻1 using a generalized
likelihood ratio test. Nested means that 𝐻0 and 𝐻1 are based on the same exponential family, have the
same link function, but Θ(0), the set of values of the canonical parameter 𝜃 allowed by 𝐻0, is a subset of
Θ(1), the set of values allowed by 𝐻1.

Without loss of generality, we can think of 𝐻1 as the model

𝜂𝑖 =
𝑝

∑
𝑗=0

𝑥𝑖𝑗𝛽𝑗 (𝑖 = 1, … , 𝑛) ,

and 𝐻0 is the same model with 𝛽𝑞+1 = 𝛽𝑞+2 = ⋯ = 𝛽𝑝 = 0.

Now, the log likelihood ratio statistic for a test of 𝐻0 against 𝐻1 is

𝐿01 ≡ 2 log (max𝜃∈Θ(1) 𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝜃)
max𝜃∈Θ(0) 𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝜃))

= 2 log 𝑓𝑌 (𝑦 ∣ 𝑋 ; ̂𝜃(1)) − 2 log 𝑓𝑌 (𝑦 ∣ 𝑋 ; ̂𝜃(0))
(2.9)

where ̂𝜃(1) and ̂𝜃(0) result from 𝑏′( ̂𝜃(𝑗)
𝑖 ) = ̂𝜇(𝑗)

𝑖 , 𝑔( ̂𝜇(𝑗)
𝑖 ) = ̂𝜂(𝑗)

𝑖 (𝑖 = 1, … , 𝑛) where ̂𝜂(𝑗) is the linear predictor
evaluated at the maximum likelihood estimate for 𝛽 under hypothesis 𝐻𝑗 (𝑗 = 0, 1). Here, we assume
that 𝜙𝑖 (𝑖 = 1, … , 𝑛) are known; the case of unknown 𝜙 is discussed in Section 2.5.

We reject 𝐻0 in favour of 𝐻1 when 𝐿01 > 𝑘 where 𝑘 is determined by the size 𝛼 of the test. Under 𝐻0,
𝐿01 has an asymptotic chi-squared distribution with 𝑝 − 𝑞 degrees of freedom.

The saturated model is defined to be the model where the canonical parameters 𝜃 (or equivalently 𝜇 or 𝜂)
are unconstrained, and the parameter space is 𝑛-dimensional. For the saturated model, we can calculate
the maximum likelihood estimators ̂𝜃 directly from their likelihood (2.1) by differentiating with respect
to 𝜃1, … , 𝜃𝑛 to give

𝜕
𝜕𝜃𝑘

log 𝑓𝑌 (𝑦 ∣ 𝑋 ; 𝜃) = 𝑦𝑘 − 𝑏′(𝜃𝑘)
𝜙𝑘

𝑘 = 1, … , 𝑛.

Therefore 𝑏′( ̂𝜃𝑘) = 𝑦𝑘 (𝑘 = 1, … , 𝑛), and, hence, ̂𝜇𝑘 = 𝑦𝑘 (𝑘 = 1, … , 𝑛). Hence, the saturated model fits
the data perfectly, as the fitted values ̂𝜇𝑘 and observed values 𝑦𝑘 are the same for every observation. The
saturated model is rarely of any scientific interest in its own right. It is overly parameterized, having
as many parameters as there are observations. However, every other model is necessarily nested in the
saturated model, and a test comparing a model 𝐻0 against the saturated model can be interpreted as a
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goodness of fit test. If there is no significant evidence that the saturated model — which fits the observed
data perfectly — provides a better fit than model 𝐻0, we can conclude that 𝐻0 is an acceptable fit to
the data.

From (2.9), the log likelihood ratio statistic for a test of 𝐻0 against the saturated alternative is

𝐿0 = 2 log 𝑓𝑌 (𝑦 ∣ 𝑋 ; ̂𝜃(𝑠)) − 2 log 𝑓𝑌 (𝑦 ∣ 𝑋 ; ̂𝜃(0))

where ̂𝜃(𝑠) is such that 𝑏′( ̂𝜃(𝑠)) = 𝑦. However, calibrating 𝐿0 is not straightforward. In some circumstances
(typically those where the response distribution might be adequately approximated by a normal) 𝐿0 has
an asymptotic chi-squared distribution with 𝑛 − 𝑞 − 1 degrees of freedom, under 𝐻0. Large values of
𝐿0 is evidence against 𝐻0 as a plausible model for the data. However, in other situations, for example
Bernoulli response distributions, the 𝜒2 approximation to 𝐿0 may be poor.

The degrees of freedom of model 𝐻0 and for this test is 𝑛 − 𝑞 − 1, whicn is the number of observations
minus the number of linear parameters of 𝐻0. We call 𝐿0 the scaled deviance of model 𝐻0.

From (2.3) and (2.9) we can write the scaled deviance of model 𝐻0 as

𝐿0 = 2
𝑛

∑
𝑖=1

𝑦𝑖[ ̂𝜃(𝑠)
𝑖 − ̂𝜃(0)

𝑖 ] − [𝑏( ̂𝜃(𝑠)
𝑖 ) − 𝑏( ̂𝜃(0)

𝑖 )]
𝜙𝑖

, (2.10)

which is easily computed using the observed data, provided that 𝜙𝑖 (𝑖 = 1, … , 𝑛) is known.

Remark 2.1. The log likelihood ratio statistic (2.9) for testing 𝐻0 against a non-saturated alternative 𝐻1
can be written as

𝐿01 = 2 log 𝑓𝑌 (𝑦; ̂𝜃(1)) − 2 log 𝑓𝑌 (𝑦; ̂𝜃(0))
= [2 log 𝑓𝑌 (𝑦; ̂𝜃(𝑠)) − 2 log 𝑓𝑌 (𝑦; ̂𝜃(0))] − [2 log 𝑓𝑌 (𝑦; ̂𝜃(𝑠)) − 2 log 𝑓𝑌 (𝑦; ̂𝜃(1))]
= 𝐿0 − 𝐿1 .

(2.11)

The log likelihood ratio statistic for comparing two nested models is the difference between their scaled
deviances. Furthermore, as $ p - q = (n - q - 1) - (n - p - 1)$, that is the degrees of freedom for the test
is the difference in degrees of freedom of the two models.

Remark 2.2. An alternative goodness of fit statistic for a model 𝐻0 is Pearson’s 𝑋2 given by

𝑋2 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝜇(0)
𝑖 )2

̂var(𝑌𝑖 ∣ 𝑥𝑖)
. (2.12)

𝑋2 is small when the squared differences between observed and fitted values (scaled by variance) is small.
Hence, large values of 𝑋2 correspond to poor fitting models. In fact, 𝑋2 and 𝐿0 are asymptotically
equivalent. However, the asymptotic 𝜒2

𝑛−𝑞−1 approximation associated with 𝑋2 is often more reliable.

2.5 Models with an unknown dispersion parameter
2.5.1 Model comparison
Thus far, we have assumed that 𝜙1, … , 𝜙𝑛 are known. This is the case for both the Poisson and Bernoulli
distributions, where 𝜙𝑖 = 1. When 𝜙𝑖 are not known, we can evaluate neither the scaled deviance (2.10)
nor the Pearson 𝑋2 statistic (2.12), and hence we cannot directly construct inferences based on them, or
compare models using (2.11).

Progress can be made if we assume that 𝜙𝑖 = 𝜎2/𝑚𝑖 (𝑖 = 1, … , 𝑛), where 𝜎2 is a common unknown
dispersion parameter and 𝑚1, … , 𝑚𝑛 are known weights (this form is present in a normal linear model,
where var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜎2). Under this assumption

𝐿0 = 2
𝜎2

𝑛
∑
𝑖=1

[𝑚𝑖𝑦𝑖( ̂𝜃(𝑠)
𝑖 − ̂𝜃(0)

𝑖 ) − 𝑚𝑖{𝑏( ̂𝜃(𝑠)
𝑖 ) − 𝑏( ̂𝜃(0)

𝑖 )}]

≡ 1
𝜎2 𝐷0 ,

(2.13)
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where 𝐷0 can be calculated using the observed data. We call 𝐷0 the deviance of the model.

In order to compare nested models 𝐻0 and 𝐻1, one might calculate the test statistic

𝐹 = 𝐿01/(𝑝 − 𝑞)
𝐿1/(𝑛 − 𝑝 − 1) = (𝐿0 − 𝐿1)/(𝑝 − 𝑞)

𝐿1/(𝑛 − 𝑝 − 1) = (𝐷0 − 𝐷1)/(𝑝 − 𝑞)
𝐷1/(𝑛 − 𝑝 − 1) . (2.14)

This statistic does not depend on the unknown dispersion parameter 𝜎2, so it can be calculated using the
observed data. Asymptotically, under 𝐻0, 𝐿01 has a 𝜒2

𝑝−𝑞 distribution and 𝐿01 and 𝐿1 are independent
(not proved here). Assuming that 𝐿1 has an approximate 𝜒2

𝑛−𝑝−1 distribution, then 𝐹 has an approximate
F distribution with 𝑝 − 𝑞 degrees of freedom in the numerator and 𝑛 − 𝑝 − 1 degrees of freedom in the
denominator. Hence, large values of 𝐹 is evidence against 𝐻0 in favour of 𝐻1.

2.5.2 Inference about model parameters
The dependence of the maximum likelihood equations 𝑢( ̂𝛽) = 0 on 𝜎2 (where 𝑢 is given by (2.4)) can be
eliminated by multiplying through by 𝜎2. However, inference based on the maximum likelihood estimates
requires knowledge of 𝜎2. This is because asymptotically the variance covariance matrix of ̂𝛽 is the inverse
of the Fisher information matrix 𝐼(𝛽) = 𝑋⊤𝑊𝑋, and this depends on 𝑤𝑖 = 1/{var(𝑌𝑖 ∣ 𝑥𝑖)𝑔′(𝜇𝑖)2} where
var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜙𝑖𝑏″(𝜃𝑖) = 𝜎2𝑏″(𝜃𝑖)/𝑚𝑖.

To calculate standard errors and confidence intervals, we need to supply an estimate 𝜎̂2 of 𝜎2. Despite
that the maximum likelihood estimator of 𝜎2 is well-defined, it is more common to base an estimator of 𝜎2

on the Pearson 𝑋2 statistic. The variance of 𝑌𝑖 can be written as var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜙𝑖𝑉 (𝜇𝑖) = 𝜎2𝑉 (𝜇𝑖)/𝑚𝑖,
where 𝑉 (𝜇𝑖) = 𝑏″(𝜃𝑖) and 𝜃𝑖 = 𝑏′−1(𝜇𝑖) (see Section 2.1). Hence, (2.12) can be written as

𝑋2 = 1
𝜎2

𝑛
∑
𝑖=1

𝑚𝑖(𝑦𝑖 − ̂𝜇𝑖)2

𝑉 ( ̂𝜇𝑖)
. (2.15)

Exercise 2.4. Suppose that 𝐻0 is an adequate fit and that 𝑋2 has an chi-squared distribution with
𝑛 − 𝑞 − 1 degrees of freedom.

1. Show that
𝜎̂2 = 1

𝑛 − 𝑞 − 1
𝑛

∑
𝑖=1

𝑚𝑖(𝑦𝑖 − ̂𝜇𝑖)2

𝑉 ( ̂𝜇𝑖)
is an approximately unbiased estimator of 𝜎2.

2. Suggest an alternative estimator based on the deviance 𝐷0.

2.6 Residuals and Model Checking
Recall that for linear models, we define the residuals to be the differences between the observed and fitted
values 𝑦𝑖 − ̂𝜇𝑖 (𝑖 = 1, … , 𝑛). In fact, both the scaled deviance and Pearson 𝑋2 statistic for a normal linear
model (which is a GLM with normal distirbution and identity link function) are the sum of the squared
residuals divided by 𝜎2. We can build on that observation to define residuals for other generalized linear
models in a natural way.

For any GLM, we define the Pearson residuals to be

𝑒𝑃
𝑖 = 𝑦𝑖 − ̂𝜇𝑖

̂var(𝑌𝑖 ∣ 𝑥𝑖)
1/2 (𝑖 = 1, … , 𝑛) .

Then, from (2.12), the statistic 𝑋2 is the sum of the squared Pearson residuals.

For any GLM, we define the deviance residuals to be

𝑒𝐷
𝑖 = sign(𝑦𝑖 − ̂𝜇𝑖) [𝑦𝑖( ̂𝜃(𝑠)

𝑖 − ̂𝜃𝑖) − {𝑏( ̂𝜃(𝑠)
𝑖 ) − 𝑏( ̂𝜃𝑖)}

𝜙𝑖
]

1/2

(𝑖 = 1, … , 𝑛) ,
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where sign(𝑥) = 1 if 𝑥 > 0 and −1 if 𝑥 < 0. Then, from (2.10), the scaled deviance, 𝐿0, is the sum of the
squared deviance residuals.

When 𝜙𝑖 = 𝜎2/𝑚𝑖 and 𝜎2 is unknown, as in Section 2.5, the expressions above are typically multiplied
through by 𝜎2 to eliminate dependence on the unknown dispersion parameter.

So, for a normal GLM the Pearson and deviance residuals are both equal to the usual residuals, 𝑦𝑖 −
̂𝜇(0)
𝑖 , 𝑖 = 1, … , 𝑛.

Both the Pearson and deviance residuals can be standardized by dividing through by (1 − ℎ𝑖𝑖)1/2, as in
Section 1.4. If the model is adequate, the derived residuals

𝑟∗
𝑖 = 𝑟𝐷

𝑖 + 1
𝑟𝐷

𝑖
log 𝑟𝑃

𝑖
𝑟𝐷

𝑖

are close to normal for a wide range of GLMs, where 𝑟𝐷
𝑖 and 𝑟𝑃

𝑖 are the standardized deviance and
Pearson residuals, respectively.

Checking GLMs using residuals is based on the same kind of diagnostic plots suggested for linear models
in Section 1.7. Similarly, the Cook’s distance 𝐶𝑗 for linear models can be adapted for GLMs by using
Pearson residuals.
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R practicals

3.1 Getting started
For running the code below, you will need the R packages MASS and SMPracticals. The MASS package
(Venables & Ripley, 2002) is one of the recommended R package and is included with the binary distribu-
tions of R, so you should have it. The SMPracticals package (Davison, 2024) is the R package providing
the datasets and a few functions for use with the practicals outlined in Davison (2003, Appendix A), and
can be installed by running
install.packages("SMPracticals")

The packages can be loaded and attached by doing
library("MASS")
library("SMPracticals")

3.2 trees data
trees contains data on the volume of timber, height and girth (diameter) of 31 felled black cherry trees;
girth is measured four feet six inches above ground (Atkinson, 1985, p. 63). The problem is to find a
simple linear model for predicting volume from height and girth. See ?trees for more details.
data("trees", package = "datasets")
pairs(trees, panel = panel.smooth)
pairs(log(trees), panel = panel.smooth)

coplot() generates conditioning plots, in which the relationship between two variables is displayed
conditional on subsets of values of other variables. This is useful to see if the relationship is stable over
the range of other variables. The plots should be read from left to right, starting from the bottom row,
and each plot corresponds to the ranges of values (from left to right) shown on the top plot for the
conditioning variable. For the relationship of log volume and log girth, conditional on height we get:
coplot(log(Volume) ~ log(Girth) | Height, data = trees, panel = panel.smooth)

Produce and interpret the conditioning plots on the orginal scale.

For an initial fit, we take a linear model and assess model fit using diagnostic plots:
m_trees <- glm(Volume ~ Girth + Height, data = trees)
summary(m_trees)
plot.glm.diag(m_trees)

20
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What do you make of the m_trees fit?

To assess the possibility of transformation:
boxcox(m_trees)

Both 𝜆 = 1 and 𝜆 = 0 lie outside the confidence interval, though the latter is better supported. One
possibility is to take 𝜆 = 1/3, corresponding to response Volume1/3.

What transformations for Girth and Height are then needed for dimensional compatibility?
Fit this model, give interpretations of the parameter estimates, and discuss its suitability.

An alternative is to suppose that a tree is conical in shape, in which case

Volume ∝ Height × Girth2 .
Equivalently, we fit
m_trees_log <- glm(log(Volume) ~ log(Girth) + log(Height), data = trees)
summary(m_trees_log)
plot.glm.diag(m_trees_log)

Are the parameter estimates consistent with this model? Does it fit adequately? What advan-
tage has it over the others for prediction of future volumes?

3.3 salinity data
salinity contains 𝑛 = 28 observations on the salinity of water in Pamlico Sound, North Carolina
(Atkinson, 1985, p. 48; Ruppert & Carroll, 1980). The response sal is the bi-weekly average of salinity.
The other three columns contain values of the covariates, respectively a lagged value of salinity lag, a
trend indicator trend, and the river discharge dis.

Using the techniques from the analysis of the tree data set as a guide, find a model suitable
for prediction of salinity from the covariates. The data contain at least one outlier.

3.4 shuttle data
shuttle contains the data in Davison (2003, Table 1.3) on O-ring failures for the space shuttle (Dalal et
al., 1989).
data("shuttle", package = "SMPracticals")
row.names(shuttle) <- NULL

To fit a binomial logistic regression model with covariate temperature, we do:
m_shuttle <- glm(cbind(r, m - r) ~ temperature, family = binomial(), data = shuttle)
anova(m_shuttle)
summary(m_shuttle)

Try fitting with and without both covariates. To assess model fit, try
plot.glm.diag(m_shuttle)

Do you find these diagnostics useful?
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3.5 bliss data
bliss provides data on mortality of flour-beetles as a function of dose of a poison (Bliss, 1935). To plot
the death rates and fit a logistic regression model, we do:
data("bliss", package = "SMPracticals")
m_bliss_logit <- glm(cbind(r, m - r) ~ log(dose), family = binomial(), data = bliss)
summary(m_bliss_logit)

with(bliss, {
plot(log(dose), r/m, ylim = c(0, 1), ylab = "Proportion dead")
points(log(dose), fitted(m_bliss_logit), pch = 3, col = 2)

})

Does the fit seem reasonble to you?
Try again with the probit and cloglog link functions.

For example, for the cloglog link function we have:
m_bliss_cloglog <- glm(cbind(r, m-r) ~ log(dose), family = binomial("cloglog"), data = bliss)
with(bliss, {

plot(log(dose), r/m, ylim = c(0, 1), ylab = "Proportion dead")
points(log(dose), fitted(m_bliss_logit), pch = 3, col = 2)
points(log(dose), fitted(m_bliss_cloglog), pch = 3, col = 3)

})

Which link function fits best? Give a careful interpretation of the resulting model.
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