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S1 Supplementary material

All labels for the sections, equations, the table, the algorithm and the figure in the current
document have been prefixed by “S” (e.g. Section S2, Table S1, Algorithm S1, etc).

The supplementary material for “Jeffreys-prior penalty, finiteness and shrinkage in binomial-
response generalized linear models” provides i) the proofs of Theorem 1, Corollary 1, Theorem 2,
Theorem 3 in the main text (see Section S2); ii) the pseudo-code for Algorithm JeffreysMPL (see
Algorithm S1), which implements the repeated maximum-likelihood fits procedure of Section 4
in the main text to maximize the penalized log-likelihood l†(β; a) in (4) for any supplied a
and link function G(η); iii) illustrations using an R implementation of Algorithm S1; and iv) R
scripts to reproduce all numerical results and figures in the main text and the current document.
The current supplementary material document and the R scripts are available for download at
http://www.ikosmidis.com/files/finiteness-jeffreys-supplementary-v1.3.zip.

In particular, the script nba-1415-case-study.R reproduces the numerical results in Exam-
ple 1, Figure 1, and Figure 3 in the manuscript, and in Table S1 in the current document; the
files nba-1415-functions.R and nba-1415-regular-season.csv provide the R functions and
the data, respectively, for the case study in the main text; the script jeffreys-shrinkage.R

reproduces Figure 2 in the main text; the file jeffreys-MPL.R provides an R implementation
of Algorithm JeffreysMPL, and the file sur-candes-2019.R computes the timings for Algo-
rithm JeffreysMPL that are reported in Section S3.3, and reproduces Figure 2b on page 11 of
the supplementary information appendix of Sur and Candès (2019) (Figure S1 here).

All code has been tested and run in R version 3.6.3 (R Core Team, 2020) using the R packages
brglm2 version 0.6.2 (Kosmidis, 2020a), enrichwith version 0.3.1 (Kosmidis, 2020b), ggplot2
version 3.2.1 (Wickham, 2016), qvcalc version 1.0.2 (Firth, 2020), rbenchmark version 1.0.0
(Kusnierczyk, 2012).
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S2 Proofs of Theorem 1, Corollary 1, Theorem 2, Theorem 3

S2.1 Proof of Theorem 1

Since X has full rank, |X>W (β)X| is not trivially zero for all β ∈ <p. Let R = {1, . . . , n} and

R(1) = {i : |ηi (β(r)) | → ∞ as r →∞; i ∈ R}
R(2) = {i : ηi (β(r))→ ci, |ci| <∞ as r →∞; i ∈ R} .

Then R = R(1) ∪R(2) and R(1) ∩R(2) = ∅, where ∅ is the empty set.
We first consider the case where R(1) and R(2) are non-empty. Then, X and W (β) can be

partitioned as

X =

[
X(1)

X(2)

]
and W (β) =

[
W(1)(β) 0

0 W(2)(β)

]
,

where X(l) has rows xi with i ∈ R(l) and W(l)(β) = diag
{
miω (ηi(β)) , i ∈ R(l)

}
(l = 1, 2). We

can then write

X>W (β(r))X = X>(1)W(1)(β(r))X(1) +X>(2)W(2)(β(r))X(2) . (S1)

The limit of the first term in the right hand side of (S1), as r →∞, is zero because the limit of
ω(η) = eη/(1 + eη)2, as η grows to infinity in absolute value, is zero. For the second term, X(2)

is such that X(2)β(r) → c as r → ∞ where c has all of its components finite. There must exist
vectors a ∈ <p and b ∈ <p with finite components such that a+ br → β0. So, X(2)a+X(2)br → c
as r → ∞ which is possible if and only if X(2)b = 0. Hence X(2) has rank smaller than p and

|X>(2)W(2)(β(r))X(2)| = 0 for all r. The result follows because |X>(2)W(2)(β(r))X(2)| = 0 for all r

and |X>(1)W(1)(β(r))X(1)| → 0 as r →∞.
Because X is of full rank and X(2) has rank smaller than p, R(1) cannot be empty. Hence,

we only need to also examine the case that R(2) is empty and R(1) is not. In this case the same

arguments as above give |X>W (β(r))X| = |X>(1)W(1)(β(r))X(1)| → 0 as r →∞.

S2.2 Proof of Corollary 1

The binomial log-likelihood l(β) in (2) is bounded above by zero. Hence, according to Theorem 1
and expression (3), l̃(β(r))→ −∞ as β(r)→ β0. Such a setting for β is always dominated, by
a choice b with finite components for which l̃(b) takes a finite value. Hence, the maximizer of
l̃(β) must have finite components.

S2.3 Proof of Theorem 2

The sum of m independent Bernoulli distributions with probability π is binomial with index m
and probability π. For this reason and without any loss of generality, the proof proceeds with
mi = 1 so that wi(β) = ω(ηi(β)) (i = 1, . . . , n).

For proving i) decompose X as X = QR, where Q is a n×p matrix with orthonormal columns
(Q>Q = Ip where Ip is the p × p identity matrix) and R is a p × p non-singular matrix. This
decomposition is always possible because X has full rank by assumption. Then |X>W (β)X| =
|Q>W (β)Q||R|2. The functions |X>W (β)X| and |Q>W (β)Q| will have stationary points of the
same kind and at the same values of β, because |R|2 > 0 does not depend on β.

Denote the ordered set of quadratic weights as w(1)(β), . . . , w(n)(β) with w(1)(β) ≤ . . . ≤
w(n)(β). The Poincaré separation theorem (see, for example Magnus and Neudecker, 1999,
Chapter 11, Theorem 10 for statement) and the positive definiteness of W (β) for β ∈ <p imply
that

p∏
t=1

w(t)(β) ≤ |Q>W (β)Q| ≤
p∏
t=1

w(n−p+t)(β) . (S2)
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Note that 0 ≤ ω(η) ≤ 1/4, with the upper bound achieved when η = 0. It follows that∏p
t=1w(t)(β) ≤ 1/4p and

∏p
t=1w(n−t+t)(β) ≤ 1/4p and that, at β = 0 inequalities (S2) be-

come 1/4p ≤ |Q>W (0)Q| ≤ 1/4p. The proof of i) concludes by noting that |Q>W (0)Q| = 1/4p

which is the maximum value that |Q>W (β)Q| can take.
For proving ii), note that ω̄(z) = z(1− z) is concave. Hence, for θ ∈ (0, 1), θ∗ = 1− θ and

any pair of n-vectors of probabilities π and ρ ω̄(θπi + θ∗ρi) ≥ ω̄(θπi) + ω̄(θ∗ρi) (i = 1, . . . , n).
Lemma 1 can then be used to show that∣∣∣X>W̄ (θπ + θ∗ρ)X

∣∣∣ ≥ ∣∣∣θX>W̄ (π)X + θ∗X>W̄ (ρ)X
∣∣∣ ,

The result in ii) follows from Magnus and Neudecker (1999, Chapter 11,Theorem 25) which can
be used to show that∣∣∣θX>W̄ (π)X + θ∗X>W̄ (ρ)X

∣∣∣ ≥ ∣∣∣X>W̄ (π)X
∣∣∣θ ∣∣∣X>W̄ (ρ)X

∣∣∣θ∗ .
Lemma 1. If A and B are both diagonal n × n matrices with non-negative diagonal elements
{ar} and {br}, respectively , and ar ≥ br, for every r ∈ {1, . . . , n}, then, if X is a n× p matrix,
|X>AX| ≥ |X>BX| .

Proof. Since A ≥ B, elementwise, A = B+C, where C is a diagonal matrix with non-negative en-
tries. Furthermore, X>AX, X>BX and X>CX are positive semidefinite, by the non-negativity
of the diagonal elements of A, B and C, respectively. Hence, by Magnus and Neudecker (1999,
Chapter 11, Theorem 9), λt

(
X>AX

)
≥ λt

(
X>BX

)
(t = 1, . . . , p), where λt(D) denotes the tth

eigenvalue of the matrix D. Since the determinant of a matrix is the product of its eigenvalues
the result follows.

S2.4 Proof of Theorem 3

For c as in Theorem 3, the adjusted responses and totals in (6) have the form

ỹ = y + 2ahπ

{
1 + (q − 1/2)

1− I(q ≤ 1/2)

π(1− π)

}
, (S3)

m̃ = m+ 2ah

{
1 + (q − 1/2)

π − I(q ≤ 1/2)

π(1− π)

}
.

The result follows for any value of q, because 0 ≤ h ≤ 1 and 0 ≤ π ≤ 1.

S3 Algorithm JeffreysMPL

S3.1 Details

Algorithm JeffreysMPL (see Algorithm S1) implements the repeated maximum-likelihood fits
procedure of Section 4 in the main text, to maximize the penalized log-likelihood l†(β; a) in (4)
for any supplied a and link function G(η).

A satisfactory starting value b for JeffreysMPL is the maximum likelihood estimate of β,
after adding a small positive constant and twice that constant to the actual binomial responses
and totals, respectively.

Step 22 of JeffreysMPL can be carried out using readily available maximum-likelihood im-
plementations for binomial-response generalized linear models, such as the glm function in R
(R Core Team, 2020) and the various implementations in the Python modules statsmodels

(Seabold and Perktold, 2010) and scikit-learn (Pedregosa et al., 2011).
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Algorithm S1 Repeated maximum-likelihood fits for the maximization of l†(β; a) in expres-
sion (4). The inputs y, m, X, a, G, g, gdash are y = (y1, . . . , yn)>, m = (m1, . . . ,mn)>, X, a in
expression (4) of the main text, G(η), g(η) and g′(η), respectively, and ||.|| is the L2 norm.
The starting vector for β is b and ε is a small positive constant. ML is any maximum likelihood
procedure.

1: procedure JeffreysMPL(y, m, X, a, G, g, gdash, ML, b, ε)
2: k← 0

3: n← numberofrows(X) . Number of observations; must equal length(y) and length(m)
4: p← numberofcolumns(X) . Number of parameters; must equal length(b)
5: eta, pi, d, dd← vector(n)
6: for i ∈ {1, 2, . . . , n} do
7: xi← (X[i, 1], . . . , X[i, p])
8: eta[i]← dotproduct(xi, b) . dot product of xi and b

9: pi[i]← G(eta[i])
10: d[i]← g(eta[i])
11: dd[i]← g′(eta[i])
12: end for
13: w← d ∗ d/pi/(1− pi) . elementwise operations
14: q← dd/w + pi . elementwise operations
15: j← I(q ≤ 1/2) . elementwise inequality and indicator function
16: V← diag(

√
m[1] ∗ w[1], . . . ,

√
m[n] ∗ w[n]) · X . · stands for matrix product

17: Q← orthogonal matrix from the QR decomposition of V
18: h← rowsums(Q ∗ Q) . sum the elements in each row of the elementwise product Q ∗ Q
19: y adj← y+ 2 ∗ a ∗ h ∗ pi ∗ (1+ (q− 1/2) ∗ (1− j)/pi/(1− pi)) . elementwise operations
20: m adj← m + 2 ∗ a ∗ h ∗ (1 + (q− 1/2) ∗ (pi− j)/pi/(1− pi)) . elementwise operations
21: bp← b

22: b← ML(y adj, m adj, X, G) . Maximum likelihood fit on adjusted data with link G

23: if ||bp− b|| < ε then
24: return b
25: else
26: k← k + 1

27: Go to 6
28: end if
29: end procedure

The estimated variance-covariance matrix of the penalized likelihood estimator can be ob-
tained as (R>R)−1, where R is the upper triangular matrix from the QR decomposition of
W (β)1/2X at the final iteration of the procedure. That decomposition is a by-product of step 17
of JeffreysMPL.

S3.2 Illustration: evolution of adjusted responses and totals

Table S1 shows the values of the adjusted responses and totals for the first 6 games of Philadel-
phia 76ers in Example 1 of the main text, at the first 6 iterations of Algorithm JeffreysMPL,
when computing the reduced-bias fit shown in Figure 1 (see script nba-1415-case-study.R

for code to reproduce Table S1). The starting values (iteration 0) are the maximum likelihood
estimates of the ability contrasts after adding 0.01 and 0.02 to the actual responses and totals,
respectively.
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Table S1: The adjusted responses (top) and totals (bottom) for the first 6 games of Philadelphia
76ers (P76) at the first 6 iterations of Algorithm S1, when computing the reduced-bias fit in
Figure 1. Figures are shown in 3 decimal digits. The home team is mentioned first in column
names. The actual response is 1 if the home team wins and 0 otherwise. The acronyms for the
opponents are IP (Indiana Pacers), MB (Milwaukee Bucks), MH (Miami Heat), HR (Houston
Rockets), OR (Orlando Magic) and CB (Chicago Bulls). The starting values are the maximum
likelihood estimates of the ability contrasts after adding 0.01 and 0.02 to the actual responses
and totals (iteration 0).

Iteration P76 vs IP P76 vs MB MH vs P76 HR vs P76 OM vs P76 CB cs P76

Adjusted responses

0 0.010 0.010 1.010 1.010 1.010 1.010
1 0.039 0.036 1.045 1.012 1.104 1.039
2 0.045 0.042 1.054 1.017 1.110 1.048
3 0.046 0.043 1.055 1.017 1.111 1.049
4 0.046 0.043 1.055 1.018 1.111 1.049
5 0.046 0.043 1.055 1.018 1.111 1.049
6 0.046 0.043 1.055 1.018 1.111 1.049

Adjusted totals

0 1.020 1.020 1.020 1.020 1.020 1.020
1 1.114 1.105 1.067 1.018 1.158 1.059
2 1.128 1.120 1.081 1.025 1.170 1.073
3 1.130 1.122 1.083 1.026 1.171 1.075
4 1.131 1.122 1.084 1.026 1.172 1.075
5 1.131 1.122 1.084 1.026 1.172 1.075
6 1.131 1.122 1.084 1.026 1.172 1.075

S3.3 Illustration: Algorithm JeffreysMPL for the high-dimensional logistic
regression setting in Sur and Candès (2019)

The R implementation of JeffreysMPL in the supplementary material (see script Jeffreys-MPL.R
for code) is used here to compute the reduced-bias estimates for a logistic regression model with
n = 1000 binary responses and p = 200 covariates, as considered in Figure 2(b) of the sup-
plementary information appendix of Sur and Candès (2019) (see script sur-candes-2019.R for
reproducible code).

In particular, we construct a 1000× 200 model matrix X by simulating 200 000 independent
random variables from a normal distribution with mean 0 and variance 10−3. Then, we simulate
1000 Bernoulli random variables from a logistic regression model with linear predictors Xβ,
where β1 = . . . = β25 = 10, β26 = . . . = β50 = −10, and β50 = . . . = β200 = 0.

The R implementation of JeffreysMPL relies on a full maximum-likelihood iteration for
step 22 using the R function glm.fit, and it takes approximately 2.73 seconds to converge to
the reduced-bias estimates of the 200 parameters in 4 decimal places on a MacBook Pro laptop
with 3.5GHz processor and 16GB of memory. The resulting maximum penalized likelihood
estimates are shown in Figure S1 along with the corresponding maximum likelihood estimates.
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Figure S1: Maximum likelihood and reduced-bias estimates for the parameters of a logistic
regression model on data simulated as in the supplementary information appendix of Sur and
Candès (2019). In particular, we construct a 1000× 200 model matrix X by simulating 200 000
independent random variables from a normal distribution with mean 0 and variance 10−3. Then,
we simulate 1000 Bernoulli random variables from a logistic regression model with linear pre-
dictors Xβ, where β1 = . . . = β25 = 10, β26 = . . . = β50 = −10, and β50 = . . . = β200 = 0. The
maximum likelihood estimates are computed using the glm R function and the reduced-bias
estimates are computed using Algorithm JeffreysMPL. The horizontal segments indicate the
parameter values used for simulating the data.
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