Professor of Statistics
Department of Statistics, University of Warwick
ioannis.kosmidis@warwick.ac.uk
ikosmidis.com ikosmidis ikosmidis_
Statistics Seminars
Department of Decision Sciences
Università Bocconi
22 February 2024
Sterzinger P, Kosmidis I (2023). Diaconis-Ylvisaker prior penalized likelihood for \(p / n \to \kappa \in (0, 1)\) logistic regression. ArXiV: 2311.11290
Kosmidis I, Zietkiewicz P (2023). Jeffreys-prior penalty for high-dimensional logistic regression: A conjecture about aggregate bias. ArXiV: 2311.07419
Responses \(y_1, \ldots, y_n\) with \(y_i \in \{0, 1\}\)
Covariate vectors \(x_1, \ldots, x_n\) with \(x_i \in \Re^p\)
\(Y_{1}, \ldots, Y_{n}\) conditionally independent with
\[ Y_i | x_i \sim \mathop{\mathrm{Bernoulli}}(\pi_i)\,, \quad \log \frac{\pi_i}{1 - \pi_i} = \eta_i = \sum_{t = 1}^p \beta_t x_{it} \]
Widely used for inference about covariate effects on binomial probabilities, probability calibration, and prediction
\(\displaystyle l(\beta; y, X) = \sum_{i = 1}^n \left\{y_i \eta_i - \log\left(1 + e^{\eta_i}\right) \right\}\)
\(\hat{\beta} = \arg \max l(\beta; y, X)\)
\(\hat\beta := \beta^{(\infty)}\) where \(\displaystyle \beta^{(j + 1)} = \left(X^T W^{(j)} X\right)^{-1} X^T W^{(j)} z^{(j)}\)
\(W\) is a diagonal matrix with \(i\)th diagonal element \(\pi_i ( 1- \pi_i)\)
\(z_i = (y_i - \pi_i) / \{ \pi_i (1 - \pi_i) \}\) is the working variate
\[ \begin{array}{l} n = 2000 \\ p = 400 \\ x_{ij} \stackrel{iid}{\sim} \mathop{\mathrm{N}}(0, 1/n) \\ \\ \beta_0 = (b_1, \ldots, b_{200}, 0, \ldots, 0)^\top \\ b_j \stackrel{iid}{\sim} \mathop{\mathrm{N}}(6.78, 1) \\ \end{array} \implies \begin{array}{l} \gamma^2 = \mathop{\mathrm{var}}(x_i^\top \beta_0) \simeq 4.7 \\ \kappa = 0.2 \\ \end{array} \]
\[ y_i \stackrel{ind}{\sim} \mathop{\mathrm{Bernoulli}}(1/(1 + {e^{-x_i^\top\beta_0}})) \]
\(W = 2 ( \hat{l} - \hat{l}_{0} )\), \(\hat{l}_{0}\) is maximized log-likelihood under \(H_0: \beta_{201} = \ldots = \beta_{210} = 0\)
Classical theory predicts \(W_0 \stackrel{d}{\rightarrow} \chi^2_{10}\)
\(Z = \hat\beta_{k} / [(X^\top \hat{W} X)^{-1}]_{kk}^{1/2}\)
Classical theory predicts \(Z \stackrel{d}{\rightarrow} \mathop{\mathrm{N}}(0, 1)\) when \(\beta_{k} = 0\)
sharp phase transition about when the ML estimate has infinite components, when \(\eta_i = \delta + x_i^\top \beta\), \(x_i \sim \mathop{\mathrm{N}}(0, \Sigma)\), \(p/n \to \kappa \in (0, 1)\), \(\mathop{\mathrm{var}}(x_i^\top\beta_0) \to \gamma^2\)
a method, based on approximate message passing (AMP), that recovers estimation and inferential performance by appropriately rescaling \(\hat\beta\), whenever that exists
empirical evidence that maximum Jeffreys-penalized likelihood (mJPL) achieves a substantial reduction in persistent bias when \(p / n \to \kappa\), performing similarly to the rescaled ML estimator, whenever that exists
?
\[ \log p(\beta; X) = \frac{1 - {\color[rgb]{0.70,0.1,0.12}{\alpha}}}{{\color[rgb]{0.70,0.1,0.12}{\alpha}}} \sum_{i=1}^n \left\{ \zeta'\left(x_i^\top {\color[rgb]{0.70,0.1,0.12}{\beta}_P}\right) x_i^\top \beta - \zeta\left(x_i^\top \beta\right) \right\} + C \] with \(\zeta(\eta) = \log(1 + e^\eta)\)
\[ l^*(\beta; y, X) = \frac{1}{\alpha} \sum_{i = 1}^n \left\{y_i^* x_i^\top\beta - \zeta\left(x_i^\top \beta\right) \right\} \] with \(y_i^* = \alpha y_i + (1 - \alpha) \zeta'\left(x_i^\top \beta_P\right)\)
\(\hat{\beta}^{\textrm{\small DY}}= \arg \max l^*(\beta; y, X)\)
MDYPL is ML with pseudo-responses \(\quad \Longleftarrow \quad\) \(l(\beta; y^*, X) / \alpha = \ell^*(\beta; y, X)\)
Rigon & Aliverti (2023, Theorem 1): \(\hat{\beta}^{\textrm{\small DY}}\) is unique and exists for all \(\{y, X\}\) configurations
\(\displaystyle \hat{\beta}^{\textrm{\small DY}}\longrightarrow \left\{ \begin{array}{ll} \hat\beta\,, & \alpha \to 1 \\ \beta_P\,, & \alpha \to 0 \end{array}\right.\)
Rigon & Aliverti (2023) suggest adaptive shrinkage with \(\alpha = 1 / (1 + \kappa)\)
ML estimator of a logistic regression model is biased away from \(0\)
Empirical evidence that this continues to hold in high dimensions
\[\LARGE\Downarrow\]
\[\beta_{P} = 0\]
The empirical distribution of \(\beta_0\) elements converges to \(\pi_{\bar{\beta}}\) and \(\sum_{j = 1}^p \beta_{0,j}^2 / p \to \mathop{\mathrm{E}}(\bar{\beta}^2) < \infty\)
\(x_{ij} \stackrel{iid}{\sim} \mathop{\mathrm{N}}(0, 1 / n)\)
As \(p / n \to \kappa \in (0, 1)\), \(\mathop{\mathrm{var}}(x_i^\top \beta_0) \to \gamma^2 > 0\)
Develop a generalized AMP recursion (see Feng et al., 2022 for an overview of AMP), whose iterates have a known asymptotic distribution, with stationary point \(\hat{\beta}^{\textrm{\small DY}}\)
Solution \(({\mu}_{*}, {b}_{*}, {\sigma}_{*})\) to the system of nonlinear equations in \((\mu, b, \sigma)\)
\[ \begin{aligned} 0 & = \mathop{\mathrm{E}}\left[2 \zeta'(Z) Z \left\{\frac{1+\alpha}{2} - \zeta' \left(\textrm{prox}_{b \zeta}\left(Z_{*} + \frac{1+\alpha}{2}b\right) \right) \right\} \right] \\ 0 & = 1 - \kappa - \mathop{\mathrm{E}}\left[\frac{2 \zeta'(Z)}{1 + b \zeta''(\textrm{prox}_{b\zeta}\left(Z_{*} + \frac{1+\alpha}{2}b\right))} \right] \\ 0 & = \sigma^2 - \frac{b^2}{\kappa^2} \mathop{\mathrm{E}}\left[2 \zeta'(Z) \left\{\frac{1+\alpha}{2} - \zeta'\left(\textrm{prox}_{b\zeta}\left( Z_{*} + \frac{1+\alpha}{2}b\right)\right) \right\}^2 \right] \end{aligned} \tag{1}\]
\(Z \sim \mathop{\mathrm{N}}(0, \gamma^2)\)
\(Z_{*} = \mu Z + \kappa^{1/2} \sigma G\) with \(G \sim \mathop{\mathrm{N}}(0, 1)\) independent of \(Z\)
\(\textrm{prox}_{b\zeta}\left(x\right)=\arg\min_{u} \left\{ b\zeta(u) + \frac{1}{2} (x-u)^2 \right\}\) is the proximal operator
Solvers for nonlinear systems, after cubature approximation of expectations
Theorem 1 (Aggregate asymptotic behaviour of mDYPL estimator)
Assume that \((\alpha,\kappa,\gamma)\) are such that \(\| \hat{\beta}^{\textrm{\small DY}} \|_2 = \mathcal{O}(n^{1/2})\) almost surely, and that (1) admits a solution \(({\mu}_{*}, {b}_{*}, {\sigma}_{*})\) such that the Jacobian of the RHS of (1) is nonsingular.
Then, for any function \(\psi: \Re^2 \to \Re\) that is pseudo-Lipschitz of order 2 \[ \frac{1}{p} \sum_{j=1}^{n} \psi(\hat{\beta}^{\textrm{\small DY}}_j - {\mu}_{*}\beta_{0,j}, \beta_{0,j}) \overset{\textrm{a.s.}}{\longrightarrow} \mathop{\mathrm{E}}\left[\psi({\sigma}_{*}G, \bar{\beta})\right], \quad \textrm{as } n \to \infty \] where \(G \sim \mathop{\mathrm{N}}(0,1)\) is independent of \(\bar{\beta} \sim \pi_{\bar{\beta}}\)
\(\psi(t,u)\) | statistic | a.s. limit | |
---|---|---|---|
\(t\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j - {\mu}_{*}\beta_{0,j}\right)\) | Bias | \(0\) |
\((t-(1-{\mu}_{*})u)^2\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j - \beta_{0,j}\right)^2\) | MSE | \({\sigma}_{*}^2 + (1-{\mu}_{*})^2 \gamma^2 / \kappa\) |
\(t^2\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j - {\mu}_{*}\beta_{0,j}\right)^2\) | Variance | \({\sigma}_{*}^2\) |
\(\psi(t,u)\) | statistic | a.s. limit | |
---|---|---|---|
\(t\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j / {\mu}_{*}- \beta_{0,j}\right)\) | Bias | \(0\) |
\(t^2/{\mu}_{*}^2\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j / {\mu}_{*}- \beta_{0,j}\right)^2\) | MSE / Variance | \({\sigma}_{*}^2 / {\mu}_{*}^2\) |
Rigon & Aliverti (2023)
Rigon & Aliverti (2023)
For any given \(\kappa\) and \(\gamma\), find the amount of shrinkage (value of \(\alpha\)) that results in:
\(\hat{\beta}^{\textrm{\small DY}}\) having zero asymptotic bias
\(\hat{\beta}^{\textrm{\small DY}}/ {\mu}_{*}\) having minimal asymptotic mean squared error
For \((\kappa, \gamma) \in (0, 1) \times (0, \infty)\): \(\displaystyle \quad \alpha_{\rm \small UB} = \arg \mathop{\mathrm{solve}}_{\alpha \in (0, 1)} \{{\mu}_{*}= 1\}\)
For \((\kappa, \gamma) \in (0, 1) \times (0, \infty)\): \(\displaystyle \quad \alpha_{\rm \small MM} = \arg \min_{\alpha \in (0, 1)} \frac{{\sigma}_{*}^2}{{\mu}_{*}^2}\)
\(\hat{\beta}^{\textrm{\small DY}}\) is the mDYPL estimator with covariate vectors \(x_{i} \stackrel{iid}{\sim} \mathop{\mathrm{N}}(0, \Sigma)\) and signal \(\beta_0\)
As \(p / n \to \kappa \in (0, 1)\), \(\mathop{\mathrm{var}}(x_i^\top \beta_0) = \beta_0^\top \Sigma \beta_0 \to \gamma^2 > 0\)
Under the assumption \(\underset{n \to \infty}{\limsup } \, \lambda_{\max}(\Sigma) / \lambda_{\min}(\Sigma) < \infty\), Theorem 1 still holds with \[ \frac{1}{p} \sum_{j=1}^p \psi \left( {\color[rgb]{0.70,0.1,0.12}{\sqrt{n} \tau_j}} \left( \hat{\beta}^{\textrm{\small DY}}_{j}-{\mu}_{*}\beta_{0,j}\right), {\color[rgb]{0.70,0.1,0.12}{\sqrt{n} \tau_j}} \beta_{0,j} \right) \overset{\textrm{a.s.}}{\longrightarrow} \mathop{\mathrm{E}}\left[\psi({\sigma}_{*}G, \bar{\beta})\right] \] where \(\tau_j^2 = \mathop{\mathrm{var}}(x_{ij} \mid x_{i, -j})\)
Theorem 2 Assume that \((\alpha,\kappa,\gamma)\) are such that the conditions of Theorem 1 are met.
Then for any regression coefficient such that \(\sqrt{n} \tau_j \beta_{0,j} = \mathcal{O}(1)\), \[ Z^*_j = \sqrt{n} \tau_j \frac{\hat{\beta}^{\textrm{\small DY}}_{j} - {\mu}_{*}\beta_{0,j}}{{\sigma}_{*}} \overset{d}{\longrightarrow} \mathcal{N}(0,1) \]
Theorem 3 Assume that \((\alpha,\kappa,\gamma)\) are such that the conditions of Theorem 1 are met.
Let \(I = \{i_1,\ldots,i_k\}\), and define the DY prior penalized likelihood ratio test statistic \[ \Lambda_I = \underset{\beta \in \Re^p}{\max} \, \ell(\beta; y^*, X) - \underset{\substack{\beta \in \Re^p: \\ \beta_j = 0, \, j \in I }}{\max} \, \ell(\beta; y^*, X) \]
Then, under \(H_0: \beta_{0,i_1} = \ldots = \beta_{0,i_k} = 0\), it holds that \[ 2 \Lambda_{I} \overset{d}{\longrightarrow} \frac{\kappa \sigma_{*}^2}{b_{*}} \chi^2_k \]
Empirical evidence with MDYPL supports Zhao et al. (2022, Conjecture 7.1), with state evolution given from a system of 4 equations in 4 unknowns
Asymptotic results seem to apply for a broad class of covariate distributions with sufficiently light tails (e.g. sub-Gaussian), as also observed in Sur & Candès (2019)
Results in Han & Shen (2023) can be used to examine universality for general model matrices
\(p / n\) is a good estimate of \(\kappa\)
For multivariate normal covariates and potentially other distributions with light tails, \(\gamma\) can be estimated using
the ProbFrontier method (Sur & Candès, 2019)
the SLOE method (Yadlowsky et al., 2021)
\(\tau_j\) can be estimated using the residual sums of squares from the regressions of each covariate on all the others (Zhao et al., 2022, sec. 5.1)
\[ Y_i | x_i \sim \mathop{\mathrm{Bernoulli}}(\pi_i)\,, \quad \log \frac{\pi_i}{1 - \pi_i} = \eta_i = \delta + \sum_{t = 1}^p \beta_t x_{it} \]
Conjecture 1 Suppose that \(x_{i} \stackrel{iid}{\sim} \mathop{\mathrm{N}}(0, \Sigma)\), and that \(\mathop{\mathrm{var}}(x_i^\top \beta_0) \to \gamma_0^2\), as \(p / n \to \kappa \in (0, 1)\).
Then, the mJPL estimator \((\tilde\delta, \tilde\beta^\top)^\top\) satisfies \[ \frac{1}{p} \sum_{j = 1}^p (\tilde\beta_j - \alpha_\star \beta_{0,j}) \overset{\textrm{a.s.}}{\longrightarrow} 0 \] with \(\alpha_\star \le 1\). For small to moderate values of \(\delta_0^2 / \gamma_0^2\), the scaling \(\alpha_\star\) can be approximated by \[ q(\kappa, \gamma, \gamma_0; b) = \left\{ \begin{array}{ll} 1 \,, & \text{if } \kappa < h_{\rm MLE}(\delta, \gamma_0) \\ \kappa^{b_1} \gamma^{b_2} \gamma_0^{b_3}\,, & \text{if } \kappa > h_{\rm MLE}(\delta, \gamma_0) \end{array} \right. \] where \(b_1 < -1\), \(b_2 < -1\), \(b_3 > 0\).
Predictions for \(b_1\), \(b_2\), \(b_3\) are -1.172, -1.869, 0.817, respectively (Kosmidis & Zietkiewicz, 2023)
Sterzinger P, Kosmidis I (2023). Diaconis-Ylvisaker prior penalized likelihood for \(p / n \to \kappa \in (0, 1)\) logistic regression. ArXiV: 2311.11290
Kosmidis I, Zietkiewicz P (2023). Jeffreys-prior penalty for high-dimensional logistic regression: A conjecture about aggregate bias. ArXiV: 2311.07419
Ioannis Kosmidis - High-dimensional logistic regression