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1 Testing for proportional odds



Wine tasting data’

rating
contact temp 1 2 3 4 5
no cold 4 9 5 0 O
warm 0 5 8 3 2
yes cold 1 7 8 2 0
warm 0 1 5 7 5

Experiment on the effect of factors on the bitterness of white wine

contact of juice with skin and temperature when crushing the grapes

9 judges rated 2 bottles per combination of factors in terms of bitterness

Idata from Randall (1989)
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Testing for proportional odds

Assume that counts for the ith factor combination are from independent

(Y,'l, ey Y,5) ~ MU|'C(].87 (7T,-17 - ,7T,'5))

Proportional odds model?

i1+ ...+ T

log
Tijt1+ .-+ 75

:Oéj—ﬂW,'—(SZ,'

where w; is 0 (cold) or 1 (warm), z; is 0 (no) or 1 (yes),
B,0ER ar <...<ay<as =00

2see, McCullagh (1980)
3see, Peterson and Harrell (1990)
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Testing for proportional odds

Assume that counts for the ith factor combination are from independent

(Y,'l, ey Y,5) ~ MU|'C(].87 (7T,-17 - ,7T,'5))

Proportional odds model?
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log
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where w; is 0 (cold) or 1 (warm), z; is 0 (no) or 1 (yes),
B,0ER ar <...<ay<as =00

Partial proportional odds model®

7T,'1+...—|—7T,'j

log
Tij+1 + ...+ Tis

= Oéj — ’YjWi — (52,'

Proportional odds hypothesis 71 =y =3 =y = f3

2see, McCullagh (1980)
3see, Peterson and Harrell (1990)



Testing for proportional odds
Use Wald statistic )
()T {LF@LT}
with a x3 limiting distribution under proportional odds

F7(68) is v-block of the inverse Fisher information matrix

. |
L is a matrix of y-contrasts { 1. -1 ]
. 1 -1

5see, Pratt (1981) and Agresti (2010, §3.4.5) for sufficient conditions



Testing for proportional odds
Use Wald statistic )
()T {LF@LT}
with a x3 limiting distribution under proportional odds

F7(68) is v-block of the inverse Fisher information matrix

S |
L is a matrix of y-contrasts { 1. -1 ]
. 1 -1

Maximum likelihood* returns infinite estimates®

a3 o g1 Y2 7 Va o
-1.27 110 3.77 2490 21.10 2.15 287 2255 1.47
Maximum absolute log-likelihood gradient: 10~°
-1.27 110 3.77 33.89 30.10 215 287 3155 1.47

Maximum absolute log-likelihood gradient: 10710

“estimation here is done using the R package ordinal (Christensen, 2015)

5see, Pratt (1981) and Agresti (2010, §3.4.5) for sufficient conditions



Requirements from a good estimator for PO models
Same or similar properties with the MLE (e.g. asymptotic efficiency)
Finite estimates and corresponding standard errors

Invariance to data (dis)aggregation

Aggregated Disaggregated
rating

contact temp 1 2 3 4 5 1 2 3 4 5
no cold 4 9 5 0 014 9 5 0 O
warm 0o 5 8 3 2|0 4 6 1 2

warm o 1 2 2 O

yes cold 1 7 8 2 01 7 8 2 0
0 1 5 7 b

warm 0O 1 5 7 5

Optimal sampling properties which are preserved under linear parameter
transformations (e.g. L contrasts, reversal of categories and so on)
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2 Reducing bias



Cumulative link model®

Vectors of counts on k ordered categories are from independent
multinomial vectors Y1,..., Y, with

Y; |X,' ~ Mult(m,-, (7‘(,‘17 R 771','/())

p+k—1
g(7r,-1 —|——|—7T,_,) :aj—i—ﬁTx; = Z GtZ,:,'t
t=1

X; is a p-vector of explanatory variables

a1 <...< k.1 <ag=o00and g€ RP

0= (al,...,ak_l,ﬂl,...,ﬁp)T

g(.) is a monotone increasing, differentiable link function

Special cases
Proportional odds model: g = logit

Proportional hazards model (grouped survival times): g = cloglog

6see, McCullagh (1980) and Agresti (2010, §5.1)



Bias reduction through adjusted score functions

Maximum likelihood estimator

0« ZZ U(ﬂ"u_ ’J“)z,-jt:o

7TU+]_
where g, = dg~'(n)/dn
Bias-reduced estimator’

An estimator with smaller asymptotic bias than 0 is

adjusted response y;:

/—/%
Yii + G — CGj—1 _ Yij+1t Gijv1 — G _
& ) - - Zjje =0

Tij Tij+1

where Cij = ml-g,./j/[Z,-F_IZ,.T]Jj/Q and Cio = Cik = 0

“see, K. (2014, RSSB) and K. and Firth (2009, B'ka) for method



[terative maximum likelihood fits

The kernel in the adjusted score (omitting /) is

yi+di  ysitdina

Uy Tj4+1

where d; = ¢; — ¢j_1



[terative maximum likelihood fits

The kernel in the adjusted score (omitting /) is

yi+di  ysitdina

Uy Tj4+1

where d; = ¢; — ¢j_1
Empirical cumulative logits

T +...+7;
Tjiy1+ ...+ Tk

d1:0.577l'1,de*’lTj(_jI2,...,k71), and dk:0.57’/Tk

log =

1 add 0.5 to the counts of the first and last category only
2 use ML on the adjusted data

The bias-reduced estimators end up being the empirical cumulative logits

*

Yi+...+Y;+05
ajzlo
Yijg1+...+ Y +05




[terative maximum likelihood fits

The kernel in the adjusted score (omitting /) is

yi+di  ysitdina

Uy Tj4+1

where d; = ¢; — ¢j_1

More general models

The kernel can be re-expressed as

always > 0

Yi +dili = midia (1 = ) /71— yja + dialin — madi(1

— )/

M Tj4+1

where [; is 1 if d; > 0 and 0 else

Iterative maximum likelihood fits

At the uth iteration

1 add dj(U)Ij(U) L )dj(i)l( j+1)/ j+1 to y;

2 fit the model on the adjusted counts with maximum likelihood



Properties of bias-reduced estimator
0* is equivariant under linear transformations®

i.e. the bias-reduced estimator of L8 is LO*

8see, K. (2014, RSSB, §6-7) for proofs



Properties of bias-reduced estimator

0* is equivariant under linear transformations®

0* and 0 have the same asymptotic distribution, i.e. N(6, F~1(0))°
First-order inference tools, like Wald tests, apply unaltered

Standard errors and estimated variance-covariance matrices, in general,
can be computed using F~1(6*)

8see, K. (2014, RSSB, §6-7) for proofs
9see, Firth (1993) and K. and Firth (2009)



Properties of bias-reduced estimator

0* is equivariant under linear transformations®
0* and 0 have the same asymptotic distribution, i.e. N(6, F~1(0))°

0* has always finite components

a1 az a3 ay " 72 73 Va o

Maximum likelihood
Estimates -1.27 1.10 3.77 00 oo 215 287 oo 1.47
Std. errors - - - - - - - - -

Bias reduction
Estimates -1.19 1.05 350 5.20 262 205 265 296 1.40
Std. errors 050 0.44 074 147 152 058 075 150 0.46

Testing for proportional odds using 0
W = 0.7502 leading to a p-value of 0.861 (based on x3)

8see, K. (2014, RSSB, §6-7) for proofs
9see, Firth (1993) and K. and Firth (2009)



Properties of bias-reduced estimator

0* is equivariant under linear transformations®

0* and 0 have the same asymptotic distribution, i.e. N(6, F~1(0))°

0* has always finite components

0* is invariant to data (dis)aggregation

Aggregated Disaggregated
rating
contact temp 1 2 3 4 5 1 2 3 4 5
no cold 4 9 5 0 0|4 9 5 0 O
warm 0O 5 8 3 2|0 4 6 1 2
warm o 1 2 2 O
yes cold 1 7 8 2 0|1 7 8 2 0
warm 0o 1 5 7 5|10 1 5 7 5

Adding constants + ML is dangerous for general models

8see, K. (2014, RSSB, §6-7) for proofs
9see, Firth (1993) and K. and Firth (2009)



Graduate admissions in Stanford U
Data

Admission scores and candidate characteristics =7
from 106 applications to the political science ‘J"““"\
PhD at Stanford University

rater’s score (1 <2 <3 <4 <5)
interest in American politics and political theory (z1 and zj; 1:yes, 0:no)
standardized score on quantitative and verbal parts of GRE (x;; and x;2)

gender (g;; 0:male and 1:female)
Proportional odds model
logit(mi1 + ... + mjj) = oj — Pixiy — PoXio — B3zi1 — Paziz — P58

ML estimates
B =1.993, B, = 0.892, 35 = 2.816, B4 = 0.009, Bs = 1.215

Orater F1 in the analysis in Jackman (2004); R package pscl (Jackman, 2015)



Simulation results

Bias MSE Bias® /Variance ~Coverage

(%) (%)
f1 013 0.14 13.90 94.42
B> 0.05 0.06 5.02 94.15
ML B3 022 0.79 6.29 94.68
Ba 0.00 0.64 0.00 94.50
Bs 0.07 0.24 2.33 94.21
B 0.00 0.11 0.00 95.05
B> 0.00 0.05 0.00 95.09
BR ;3 0.01 059 0.01 95.32
Ba 0.00 0.56 0.00 95.55
Bs -0.00 0.21 0.00 94.99

figures are based on 10000 samples under the maximum likelihood fit
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3 Direction of shrinkage



Direction of shrinkage

Model is "shrunken” to a binomial GLM for the boundary categories

Demonstration
Complete enumeration (3136) of tables of the form

category
X 1 2 3 4 5 6 total
-0.5 3
0.5 3

Model: g(mj1 + ...+ mjj) = o — Bx;

Calculate fitted probabilities based on 6 and 6* for each table and for
g = logit and g = cloglog.



category 1 category 2 category 3 category 4 category 5 category 6

1.0

0.8

logit
04 06

0.2

1.00.0

fitted probability (BR)
0.8

cloglog

0.0

fitted probability (ML)
BR probabilities for intermediate categories tend to shrink to 0
BR probabilities for 1st (6th) category tend to shrink to g~*(0) (1 - g7*(0))
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4 Discussion



Discussion |

Estimation properties

0* has all the required properties when estimating cumulative link models
and is always finite

First-order likelihood inference applies in a “plug-in" fashion

Shrinkage
Model is shrunken towards a binomial GLM for the boundary categories

Adjusted scores provide just enough regularization to correct for bias and
improve inference. Different regularization schemes may be needed for
other tasks (e.g. prediction)

Confidence intervals

When testing for extreme effects, default tests (e.g. Wald or adjusted
score) always reject due to the interplay of finiteness and discreteness



Discussion I

Software

bpolr R function in the supplementary material of

Kosmidis (2014). Improved estimation in cumulative link models.
Journal of the Royal Statistical Society: Series B, 76
[DOI: 10.1111 /rssb.12025]

handles general models and will soon be part of the brglm2 R package

Kosmidis (2017). brglm2: Bias reduction in generalized linear models.
R package version 0.1.4
[URL: https://cran.r-project.org/package=brgim?2]
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