Reduced-bias estimation for models with ordinal responses

loannis Kosmidis
i.kosmidis@ucl.ac.uk
http://ucl.ac.uk/~ucakiko

Department of Statistical Science, University College London
The Alan Turing Institute

31 August 2017 CEN ISBS 2017 Joint Conference Vienna, Austtria

Outline

- 1 Testing for proportional odds
- 2 Reducing bias
- 3 Direction of shrinkage
- 4 Discussion

Outline

- 1 Testing for proportional odds
- 2 Reducing bias
- 3 Direction of shrinkage
- 4 Discussion

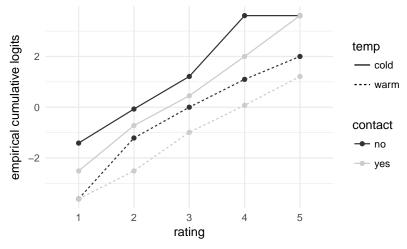
Wine tasting data¹

		rating							
contact	temp	1	2	3	4	5			
no	cold	4	9	5	0	0			
	warm	0	5	8	3	2			
yes	cold	1	7	8	2	0			
	warm	0	1	5	7	5			

Experiment on the effect of factors on the bitterness of white wine

contact of juice with skin and temperature when crushing the grapes
9 judges rated 2 bottles per combination of factors in terms of bitterness

¹data from Randall (1989)



Empirical cumulative logits for factor combination i and rating j

$$\log \frac{Y_{i1} + \ldots + Y_{ij} + 0.5}{Y_{ij+1} + \ldots + Y_{jk} + 0.5}$$

Assume that counts for the *i*th factor combination are from independent

$$(Y_{i1}, \ldots, Y_{i5}) \sim \mathsf{Mult}(18, (\pi_{i1}, \ldots, \pi_{i5}))$$

Proportional odds model²

$$\log \frac{\pi_{i1} + \ldots + \pi_{ij}}{\pi_{ii+1} + \ldots + \pi_{i5}} = \alpha_j - \beta w_i - \delta z_i$$

where w_i is 0 (cold) or 1 (warm), z_i is 0 (no) or 1 (yes), $\beta, \delta \in \Re$, $\alpha_1 < \ldots < \alpha_4 < \alpha_5 = \infty$

²see, McCullagh (1980)

³see, Peterson and Harrell (1990)

Assume that counts for the ith factor combination are from independent

$$(Y_{i1}, \ldots, Y_{i5}) \sim \mathsf{Mult}(18, (\pi_{i1}, \ldots, \pi_{i5}))$$

Proportional odds model²

$$\log \frac{\pi_{i1} + \ldots + \pi_{ij}}{\pi_{ii+1} + \ldots + \pi_{i5}} = \alpha_j - \beta w_i - \delta z_i$$

where w_i is 0 (cold) or 1 (warm), z_i is 0 (no) or 1 (yes), $\beta, \delta \in \Re$, $\alpha_1 < \ldots < \alpha_4 < \alpha_5 = \infty$

Partial proportional odds model³

$$\log \frac{\pi_{i1} + \ldots + \pi_{ij}}{\pi_{ii+1} + \ldots + \pi_{i5}} = \alpha_j - \gamma_j w_i - \delta z_i$$

²see, McCullagh (1980)

³see, Peterson and Harrell (1990)

Assume that counts for the ith factor combination are from independent

$$(Y_{i1}, \ldots, Y_{i5}) \sim \mathsf{Mult}(18, (\pi_{i1}, \ldots, \pi_{i5}))$$

Proportional odds model²

$$\log \frac{\pi_{i1} + \ldots + \pi_{ij}}{\pi_{ij+1} + \ldots + \pi_{i5}} = \alpha_j - \beta w_i - \delta z_i$$

where w_i is 0 (cold) or 1 (warm), z_i is 0 (no) or 1 (yes), $\beta, \delta \in \Re$, $\alpha_1 < \ldots < \alpha_4 < \alpha_5 = \infty$

Partial proportional odds model³

$$\log \frac{\pi_{i1} + \ldots + \pi_{ij}}{\pi_{ii+1} + \ldots + \pi_{i5}} = \alpha_j - \gamma_j w_i - \delta z_i$$

Proportional odds hypothesis $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \beta$

²see, McCullagh (1980) ³see, Peterson and Harrell (1990)

Use Wald statistic

$$(L\hat{\gamma})^{\top} \left\{ LF^{\gamma\gamma}(\hat{\theta})L^{\top} \right\}^{-1} L\hat{\gamma}$$

with a χ_3^2 limiting distribution under proportional odds $F^{\gamma\gamma}(\theta)$ is γ -block of the inverse Fisher information matrix

$$L$$
 is a matrix of γ -contrasts
$$\left[\begin{array}{ccc} 1 & . & . & -1 \\ . & 1 & . & -1 \\ . & . & 1 & -1 \end{array} \right]$$

Use Wald statistic

$$(L\hat{\gamma})^{\top} \left\{ LF^{\gamma\gamma}(\hat{\theta})L^{\top} \right\}^{-1} L\hat{\gamma}$$

with a χ^2_3 limiting distribution under proportional odds

 $F^{\gamma\gamma}(\theta)$ is γ -block of the inverse Fisher information matrix

$$L$$
 is a matrix of γ -contrasts
$$\left[\begin{array}{ccc} 1 & . & . & -1 \\ . & 1 & . & -1 \\ . & . & 1 & -1 \end{array} \right]$$

Maximum likelihood⁴ returns infinite estimates⁵

α_1	α_2	α_3	α_{4}	γ_1	γ_2	γ_3	γ_4	δ			
-1.27	1.10	3.77	24.90	21.10	2.15	2.87	22.55	1.47			
Maximum absolute log-likelihood gradient: 10^{-6}											
-1.27	1.10	3.77	33.89	30.10	2.15	2.87	31.55	1.47			
	Maximum absolute log-likelihood gradient: 10^{-10}										

⁴estimation here is done using the R package ordinal (Christensen, 2015) ⁵see, Pratt (1981) and Agresti (2010, §3.4.5) for sufficient conditions

Requirements from a good estimator for PO models

Same or similar properties with the MLE (e.g. asymptotic efficiency)

Finite estimates and corresponding standard errors

Invariance to data (dis)aggregation

		Aggregated				Disaggregated					
		rating									
contact	temp	1	2	3	4	5	1	2	3	4	5
no	cold	4	9	5	0	0	4	9	5	0	0
	warm	0	5	8	3	2	0	4	6	1	2
	warm						0	1	2	2	0
yes	cold	1	7	8	2	0	1	7	8	2	0
	warm	0	1	5	7	5	0	1	5	7	5

Optimal sampling properties which are preserved under linear parameter transformations (e.g. L contrasts, reversal of categories and so on)

Outline

- 1 Testing for proportional odds
- 2 Reducing bias
- 3 Direction of shrinkage
- 4 Discussion

Cumulative link model⁶

Vectors of counts on k ordered categories are from independent multinomial vectors Y_1, \ldots, Y_n with

$$Y_i \mid x_i \sim \mathsf{Mult}(m_i, (\pi_{i1}, \dots, \pi_{ik}))$$

$$g(\pi_{i1} + \ldots + \pi_{ij}) = \alpha_j + \beta^T x_i = \sum_{t=1}^{p+k-1} \theta_t z_{ijt}$$

 x_i is a p-vector of explanatory variables

$$\alpha_1 < \ldots < \alpha_{k-1} < \alpha_k = \infty$$
 and $\beta \in \Re^p$

$$\theta = (\alpha_1, \ldots, \alpha_{k-1}, \beta_1, \ldots, \beta_p)^T$$

g(.) is a monotone increasing, differentiable link function

Special cases

Proportional odds model: g = logit

Proportional hazards model (grouped survival times): g = cloglog

⁶see, McCullagh (1980) and Agresti (2010, §5.1)

Bias reduction through adjusted score functions

Maximum likelihood estimator

$$\hat{\theta} \leftarrow \left\{ \sum_{i} \sum_{j=1}^{k-1} g'_{ij} \left(\frac{y_{ij}}{\pi_{ij}} - \frac{y_{ij+1}}{\pi_{ij+1}} \right) z_{ijt} = 0 \right\}$$

where $g'_{ii} = \mathrm{d}g^{-1}(\eta)/\mathrm{d}\eta$

Bias-reduced estimator⁷

An estimator with smaller asymptotic bias than $\hat{\theta}$ is

$$\theta^* \leftarrow \left\{ \sum_{i} \sum_{j=1}^{k-1} g'_{ij} \left(\frac{\overbrace{y_{ij} + c_{ij} - c_{ij-1}}}{\pi_{ij}} - \frac{y_{ij+1} + c_{ij+1} - c_{ij}}{\pi_{ij+1}} \right) z_{ijt} = 0 \right\}$$

where $c_{ii} = m_i g_{ii}^{"} [Z_i F^{-1} Z_i^T]_{ii} / 2$ and $c_{i0} = c_{ik} = 0$

⁷see, K. (2014, RSSB) and K. and Firth (2009, B'ka) for method

Iterative maximum likelihood fits

The kernel in the adjusted score (omitting i) is

$$\frac{y_j + d_j}{\pi_j} - \frac{y_{j+1} + d_{j+1}}{\pi_{j+1}}$$

where $d_i = c_i - c_{i-1}$

Iterative maximum likelihood fits

The kernel in the adjusted score (omitting i) is

$$\frac{y_j + d_j}{\pi_j} - \frac{y_{j+1} + d_{j+1}}{\pi_{j+1}}$$

where $d_i = c_i - c_{i-1}$

Empirical cumulative logits

$$\log \frac{\pi_1 + \ldots + \pi_j}{\pi_{i+1} + \ldots + \pi_k} = \alpha_j$$

$$d_1 = 0.5 - \pi_1$$
, $d_j = -\pi_j$ $(j = 2, ..., k - 1)$, and $d_k = 0.5 - \pi_k$

- 1 add 0.5 to the counts of the first and last category only
- 2 use ML on the adjusted data

The bias-reduced estimators end up being the empirical cumulative logits

$$\alpha_j^* = \log \frac{Y_1 + \ldots + Y_j + 0.5}{Y_{j+1} + \ldots + Y_k + 0.5}$$

Iterative maximum likelihood fits

The kernel in the adjusted score (omitting i) is

$$\frac{y_j + d_j}{\pi_j} - \frac{y_{j+1} + d_{j+1}}{\pi_{j+1}}$$

where $d_i = c_i - c_{i-1}$

More general models

The kernel can be re-expressed as

$$\underbrace{\frac{y_{j} + \overbrace{d_{j}l_{j} - \pi_{j}d_{j+1}(1 - l_{j+1})/\pi_{j+1}}^{\text{always} \geq 0}}_{\pi_{j}} - \underbrace{\frac{y_{j+1} + d_{j+1}l_{j+1} - \pi_{j+1}d_{j}(1 - l_{j})/\pi_{j}}{\pi_{j+1}}}_{}$$

where I_i is 1 if $d_i > 0$ and 0 else

Iterative maximum likelihood fits

At the uth iteration

- **1** add $d_i^{(u)}I_i^{(u)} \pi_i^{(u)}d_{i+1}^{(u)}(1 I_{i+1}^{(u)})/\pi_{i+1}^{(u)}$ to y_i
- 2 fit the model on the adjusted counts with maximum likelihood

 θ^* is equivariant under linear transformations⁸ i.e. the bias-reduced estimator of $L\theta$ is $L\theta^*$

⁸see, K. (2014, RSSB, §6-7) for proofs

 θ^* is equivariant under linear transformations⁸

 θ^* and $\hat{\theta}$ have the same asymptotic distribution, i.e. $N(\theta, F^{-1}(\theta))^9$

First-order inference tools, like Wald tests, apply unaltered Standard errors and estimated variance-covariance matrices, in general, can be computed using $F^{-1}(\theta^*)$

⁸see, K. (2014, RSSB, §6-7) for proofs

⁹see, Firth (1993) and K. and Firth (2009)

 $heta^*$ is equivariant under linear transformations⁸

 θ^* and $\hat{\theta}$ have the same asymptotic distribution, i.e. $N(\theta, F^{-1}(\theta))^9$

θ^* has always finite components

	α_1	α_2	α_3	α_{4}	γ_1	γ_2	γ_3	γ_4	δ		
				Maxim	um like	lihood					
Estimates	-1.27	1.10	3.77	∞	∞	2.15	2.87	∞	1.47		
Std. errors	-	-	-	-	-	-	-	-	-		
	Bias reduction										
Estimates	-1.19	1.05	3.50	5.20	2.62	2.05	2.65	2.96	1.40		
Std. errors	0.50	0.44	0.74	1.47	1.52	0.58	0.75	1.50	0.46		

Testing for proportional odds using $\hat{\theta}$

W = 0.7502 leading to a *p*-value of 0.861 (based on χ_3^2)

 $^{^8} see,~K.~(2014,~RSSB,~\S6-7)$ for proofs $^9 see,~Firth~(1993)$ and K. and Firth (2009)

 θ^* is equivariant under linear transformations⁸

$$\theta^*$$
 and $\hat{\theta}$ have the same asymptotic distribution, i.e. $N(\theta, F^{-1}(\theta))^9$

 θ^* has always finite components

 θ^* is invariant to data (dis)aggregation

			Aggregated				Disaggregated					
			rating									
contact	temp	1	2	3	4	5	1	2	3	4	5	
no	cold	4	9	5	0	0	4	9	5	0	0	
	warm	0	5	8	3	2	0	4	6	1	2	
	warm						0	1	2	2	0	
yes	cold	1	7	8	2	0	1	7	8	2	0	
	warm	0	1	5	7	5	0	1	5	7	5	

Adding constants + ML is dangerous for general models

⁸see, K. (2014, RSSB, §6-7) for proofs ⁹see, Firth (1993) and K. and Firth (2009)

Graduate admissions in Stanford U

Data

Admission scores and candidate characteristics from 106 applications to the political science PhD at Stanford University

rater's score (1 < 2 < 3 < 4 < 5) interest in American politics and political theory (z_{i1} and z_{i2} ; 1:yes, 0:no) standardized score on quantitative and verbal parts of GRE (x_{i1} and x_{i2}) gender (g_i ; 0:male and 1:female)

Proportional odds model

$$logit(\pi_{i1} + \ldots + \pi_{ij}) = \alpha_j - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 z_{i1} - \beta_4 z_{i2} - \beta_5 g_i$$

MI estimates

$$\hat{\beta}_1 = 1.993, \ \hat{\beta}_2 = 0.892, \ \hat{\beta}_3 = 2.816, \ \hat{\beta}_4 = 0.009, \ \hat{\beta}_5 = 1.215$$

¹⁰rater F1 in the analysis in Jackman (2004); R package pscl (Jackman, 2015)

Simulation results

		Bias	MSE	Bias ² /Variance (%)	Coverage (%)
	β_1	0.13	0.14	13.90	94.42
	β_2	0.05	0.06	5.02	94.15
ML	β_3	0.22	0.79	6.29	94.68
	β_{4}	0.00	0.64	0.00	94.50
	β_5	0.07	0.24	2.33	94.21
	β_1	0.00	0.11	0.00	95.05
	β_2	0.00	0.05	0.00	95.09
BR	β_3	0.01	0.59	0.01	95.32
	β_{4}	0.00	0.56	0.00	95.55
	β_5	-0.00	0.21	0.00	94.99

figures are based on 10000 samples under the maximum likelihood fit

Outline

- 1 Testing for proportional odds
- 2 Reducing bias
- 3 Direction of shrinkage
- 4 Discussion

Direction of shrinkage

Model is "shrunken" to a binomial GLM for the boundary categories

Demonstration

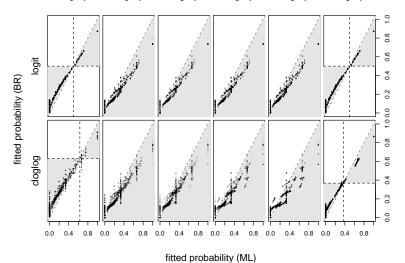
Complete enumeration (3136) of tables of the form

X	1	2	3	4	5	6	total
-0.5							3
0.5							3

Model: $g(\pi_{i1} + \ldots + \pi_{ij}) = \alpha_j - \beta x_i$

Calculate fitted probabilities based on $\hat{\theta}$ and θ^* for each table and for $g=\mathrm{logit}$ and $g=\mathrm{cloglog}.$

category 1 category 2 category 3 category 4 category 5 category 6



BR probabilities for intermediate categories tend to shrink to 0 BR probabilities for 1st (6th) category tend to shrink to $g^{-1}(0)$ (1 - $g^{-1}(0)$)

Outline

- Testing for proportional odds
- 2 Reducing bias
- 3 Direction of shrinkage
- 4 Discussion

Discussion I

Estimation properties

 θ^* has all the required properties when estimating cumulative link models and is always finite

First-order likelihood inference applies in a "plug-in" fashion

Shrinkage

Model is shrunken towards a binomial GLM for the boundary categories Adjusted scores provide just enough regularization to correct for bias and improve inference. Different regularization schemes may be needed for other tasks (e.g. prediction)

Confidence intervals

When testing for extreme effects, default tests (e.g. Wald or adjusted score) always reject due to the interplay of finiteness and discreteness

Discussion II

Software

bpolr R function in the supplementary material of

Kosmidis (2014). Improved estimation in cumulative link models. Journal of the Royal Statistical Society: Series B, 76 [DOI: 10.1111/rssb.12025]

handles general models and will soon be part of the brglm2 R package

Kosmidis (2017). brglm2: Bias reduction in generalized linear models. R package version 0.1.4 [URL: https://cran.r-project.org/package=brglm2]

References I

- Agresti (2010). Analysis of Ordinal Categorical Data (2nd Edition). John Wiley & Sons.
- Christensen, R. H. B. (2015). ordinal—regression models for ordinal data. R package version 2015.6-28. https://cran.r-project.org/package=ordinal.
- Firth, D. (1993). Bias reduction of maximum likelihood estimates. 80(1), 27-38.
- Jackman, S. (2004). What do we learn from graduate admissions committees? a multiple rater, latent variable model, with incomplete discrete and continuous indicators. *Political Analysis* 12(4), 400–424.
- Jackman, S. (2015). pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University. Stanford, California: Department of Political Science, Stanford University. R package version 1.4.9.
- K. (2014). Improved estimation in cumulative link models. Journal of the Royal Statistical Society, Series B 76(1), 169–196.
- K. and D. Firth (2009). Bias reduction in exponential family nonlinear models. Biometrika 96(4), 793–804.
- McCullagh, P. (1980). Regression models for ordinal data. 42, 109-142.
- Peterson, B. and J. Harrell, Frank E. (1990). Partial proportional odds models for ordinal response variables. Applied Statistics 39, 205–217.
- Pratt, J. W. (1981). Concavity of the log likelihood (Corr: V77 p954). Journal of the American Statistical Association 76, 103–106.
- Randall (1989). The analysis of sensory data by generalised linear model. *Biometrical Journal* 7, 781–793.