class: center, middle, inverse, title-slide .title[ # The HulC: Confidence Regions from convex hulls ] .subtitle[ ## Discussant contribution ] .author[ ###
Ioannis Kosmidis
Professor of Statistics
] .institute[ ###
University of Warwick
ikosmidis.com
ikosmidis
ikosmidis_
] .date[ ### 31 May 2023 ] --- <!-- 31 May 2023 --> <style type="text/css"> .small { /*Change made here*/ font-size: 70% } .huge .remark-code { /*Change made here*/ font-size: 200% !important; } .large .remark-code { /*Change made here*/ font-size: 120% !important; } .small .remark-code { /*Change made here*/ font-size: 70% !important; } .tiny .remark-code { /*Change made here*/ font-size: 50% !important; } .tiny-tex { /*Change made here*/ font-size: 50% !important; } .note { color: #478EC1; font-size: 120% !important; font-weight: bold; } .notesmall { color: #478EC1; } </style> ## HulC: Pros .notesmall[Guaranteed coverage] of at least `\(1 - \alpha\)` for a user-specified `\(\alpha\)`. <br> .small[(number of sub-samples grows fast, though, as level increases)] .notesmall[Directly uses the mapping from data to parameter estimates] (estimation procedure), instead of statements about the distribution of that mapping or assumptions about rates of convergence. .notesmall[Typically, fewer regularity conditions] than intervals based on the inversion of asymptotic pivots, or bootstrap/sub-sampling. - Assumes that data are realizations of independent random variables. - Requires an upper bound of the estimator's median bias. .notesmall[Simple to implement]. .small[(under the independence assumption)] .notesmall[Better coverage properties through procedures for improving estimator performance], such as median bias-reducing adjusted score functions ([Kenne Pagui, Salvan, and Sartori, 2017](#bib-kennesalvansartori2017); [Kosmidis, Kenne Pagui, and Sartori, 2020](#bib-kosmidiskennepaguisartori2020)). .notesmall[Equivariant to monotone transformations] --- ## Modelling settings Modelling settings and estimation methods - Models for stratified data (many nuisances) e.g. [Sartori (2003)](#bib-sartori2003) [Bellio, Kosmidis, Salvan et al. (2023)](#bib-bellioetal2023) - Partially-specified models e.g. quasi-likelihoods, GEEs, composite likelihoods ([Varin, Reid, and Firth, 2011](#bib-varin2011)) - Doubly-robust estimation of causal effects - Regularized estimation with tuning parameter selection e.g. ridge/lasso regression with `\(p > n\)`? - Online estimation / Online HulC intervals? e.g. explicit/implict SGD and variants ([Toulis and Airoldi, 2017](#bib-toulisairoldi2017)) Dependent data - Data exhibiting spatial/temporal dependence Ideas in [Carlstein (1986)](#bib-carlstein1986) and [Heagerty and Lumley (2000)](#bib-heagertylumley2000) can be relevant --- ## HulC: A concern HulC intervals: - typically, slightly wider than intervals from the inversion of asymptotic pivots <br> a small price to pay for coverage guarantees under fewer assumptions; - But: depend on (the RNG seed used for obtaining) the sub-samples. Like for other randomized confidence intervals, different random partitions of the data yield different intervals <br> care is needed in their use for effect discovery (e.g. designed experiments, clinical trials, observational studies, ATE, etc.) --- ## HulC and reproducibility robustness <img src="HulC_discussion_files/figure-html/unnamed-chunk-3-1.png" width="120%" /> --- ## HulC and reproducibility robustness Progress can potentially be made with HulC, because it depends directly on order statistics from independent random variables `\((\min_{1 \le j \le B} \hat\theta_j, \max_{1 \le j \le B} \hat\theta_j)\)` Is it possible to reduce the variability of the endpoints due to sub-sampling? e.g. aggregation of HulC intervals, use of properties of the distribution of order statistics to inform the choice of B, does controlling the variance of the estimator help?, ... --- ## Further points Are there any explicit links between the variance properties of the estimator and HulC's performance? Pointwise coverage guarantees `\(\longrightarrow\)` Simultaneous coverage guarantees <br> controlling `\(\alpha\)` or union bound arguments can work well in parameter spaces of fixed dimension, but perhaps not more generally? How does the performance of HulC procedures deteriorates in mispecified models (potentially persistent median bias)? Is there a price to pay for using the sample twice in adaptive HulC (once for median bias estimation and once for computing the HulC interval)? --- ## References .small[ <a name=bib-bellioetal2023></a>[Bellio, R., I. Kosmidis, A. Salvan, et al.](#cite-bellioetal2023) (2023). "Parametric bootstrap inference for stratified models with high-dimensional nuisance specifications". In: _Statistica Sinica_ 33. <a name=bib-carlstein1986></a>[Carlstein, E.](#cite-carlstein1986) (1986). "The use of subseries values for estimating the variance of a general statistic from a stationary sequence". In: _The Annals of Statistics_ 14.3, pp. 1171-1179. <a name=bib-heagertylumley2000></a>[Heagerty, P. J. and T. Lumley](#cite-heagertylumley2000) (2000). "Window Subsampling of Estimating Functions with Application to Regression Models". En. In: _Journal of the American Statistical Association_ 95.449, pp. 197-211. <a name=bib-kennesalvansartori2017></a>[Kenne Pagui, E. C., A. Salvan, and N. Sartori](#cite-kennesalvansartori2017) (2017). "Median bias reduction of maximum likelihood estimates". In: _Biometrika_ 104.4, pp. 923-938. DOI: [10.1093/biomet/asx046](https://doi.org/10.1093%2Fbiomet%2Fasx046). URL: [http://dx.doi.org/10.1093/biomet/asx046](http://dx.doi.org/10.1093/biomet/asx046). <a name=bib-kosmidiskennepaguisartori2020></a>[Kosmidis, I., E. C. Kenne Pagui, and N. Sartori](#cite-kosmidiskennepaguisartori2020) (2020). "Mean and median bias reduction in generalized linear models". In: _Statistics and Computing (to appear)_ 30, pp. 43-59. <a name=bib-sartori2003></a>[Sartori, N.](#cite-sartori2003) (2003). "Modified profile likelihoods in models with stratum nuisance parameters". In: _Biometrika_, pp. 533-549. DOI: [10.1093/biomet/90.3.533](https://doi.org/10.1093%2Fbiomet%2F90.3.533). <a name=bib-toulisairoldi2017></a>[Toulis, P. and E. M. Airoldi](#cite-toulisairoldi2017) (2017). "Asymptotic and finite-sample properties of estimators based on stochastic gradients". In: _Annals of Statistics_ 45.4, pp. 1694-1727. <a name=bib-varin2011></a>[Varin, C., N. Reid, and D. Firth](#cite-varin2011) (2011). "An overview of composite likelihood methods". In: _Statistica Sinica_ 21.1, pp. 5-42. (Visited on May. 18, 2019). ] <!-- ## References II --> <!-- ```{r refs2, echo=FALSE, results="asis"} --> <!-- PrintBibliography(myBib, start = 6, end = 9) --> <!-- ``` -->