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Abstract

The modified-score functions approach to bias reduction (Firth, 1993) is continually gain-
ing in popularity (e.g. Mehrabi & Matthews, 1995; Pettitt et al., 1998; Heinze & Schemper,
2002; Bull et al., 2002; Zorn, 2005; Sartori, 2006; Bull et al., 2007), because of the superior
properties of the bias-reduced estimator over the traditional maximum likelihood estima-
tor, particularly in models for categorical responses. Most of the activity is noted for
logistic regression, where the bias-reduction method neatly corresponds to penalization
of the likelihood by Jeffreys prior and the bias-reduced estimates are always finite and
beneficially shrink towards the origin.

The recent applied and methodological interest in the bias-reduction method motivates
the current thesis and the aim is to explore the nature and widen the applicability of the
method, identifying cases where bias reduction is beneficial. Particularly, the current
thesis focuses on the following three targets:

i) To explore the nature of the bias-reducing modifications to the efficient scores and
to obtain results that facilitate the application and the theoretical assessment of the
bias-reduction method.

ii) To establish theoretically that the bias-reduction method should be considered as
an improvement over traditional ML for logistic regressions.

iii) To deviate from the flat exponential family and explore the effect of bias reduction
in some commonly used curved models for categorical responses.
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Notation

Unless otherwise stated, the following notational conventions are used throughout the
current thesis. For the reader’s convenience, in addition to their statement here, they are
also described in their first occurrence in each chapter.

ℜ The set of real numbers
ℜp The p-dimensional Euclidean space

p−→ Converges in probability
d−→ Converges in distribution

|x|, x ∈ ℜ absolute value of x
||x|| the norm of x in the domain of x
E(X), Var(X), Cov(X) expected value, variance, covariance,
Cumr(X) r-th order cumulant (r = 1, . . . , n)
AT the transpose of a matrix A
A−1 the inverse of a square matrix A
detA the determinant of a square matrix A
traceA the trace of a square matrix A
diag(a) the diagonal matrix with diagonal

elements the components of some vector a

diag{as; s = 1, . . . , p} diag a, a = (a1, a2, . . . , ap)
1p the p× p identity matrix
Jp A p× p matrix of ones
Lp A p× 1 vector of ones
0p A p× 1 vector of zeros
A⊗B the Kronecker product of matrix A with matrix B
∇xf(x), f : ℜp → ℜ the gradient of f with respect to x, ie.

i.e., ∇xf(x) = (∂f(x)/∂x1, ∂f(x)/∂x2, . . . , ∂f(x)/∂xp)
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Abbreviations

The following abbreviations are used in the main text. In addition to their statement here,
for the readers convenience, they are re-introduced in each chapter.

BR bias-reduced
BC bias-corrected
GLM generalized linear model
IWLS iterative re-weighted least squares
IGLS iterative generalized least squares
LR likelihood ratio
ML maximum likelihood
MSE mean squared error
PLR penalized-likelihood ratio
MPL maximum penalized likelihood
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Chapter 1

Introduction

1.1 Towards the removal of bias: A brief review

Bias in estimation is a common concern of practitioners and researchers in statistics. Its
magnitude plays an important role in estimation and if large it can result in potentially
misleading inferences. In this perspective, the maximum likelihood (ML) estimator has
asymptotically desirable behaviour. Given the regularity of the statistical problem (see
for example, Cox & Hinkley, 1974, §9.1, for an account on regularity conditions for ML),
it can be shown that the ML estimator is asymptotically unbiased with a leading term in
its bias expansion of order O(n−1). For example, in the case of quantal response models,
Sowden (1972) studied the bias of estimators based on the ML, the minimum chi-squared
and the modified minimum chi-squared methods. In this study, an elegant expression
that connects the first-order bias terms of the resultant estimators is derived and it is
illustrated that the first-order bias term of the ML estimator is the smallest among the
three alternatives. Sowden (1972) only considered the case where the probabilities are
linked with a linear combination of the model parameters through the inverse of the
standard normal distribution function, but it is correctly suggested that the same result
may extend to different link functions. However, the first-order bias term of the ML
estimator could be large for small or even moderate sample sizes. There has been much
work on the ways which could be used for reducing the bias of the ML estimator and in
view of a part of the substantial literature that is related to this task, we can distinguish
two classes of methods that from now on are referred to as “bias correction” and “bias
reduction”.

1.1.1 Bias correction

The word “correction” refers to the fact that all the bias-correction methods are based on
the following two step calculation:

i) Obtain the first-order bias term of the ML estimator.
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ii) Subtract it from the ML estimates.

This way, the ML estimates and the first-order bias of the ML estimator evaluated at
the ML estimates are the building blocks of the bias-corrected estimates. The expected
value of the ML estimator β̂ for the parameters β of a parametric model, can be generally
expressed as

E
(

β̂
)

= β0 +
b1(β0)

n
+
b2(β0)

n2
+
b3(β0)

n3
+ . . . ,

where n is some measure of the units of information — usually the sample size, β0 is the
true but unknown parameter value and bt (t = 1, 2, . . .) are O(1) functions of β, which can
be explicitly obtained once the model is specified. So, the simple rearrangement

E
(

β̂
)

− b1(β0)

n
= β0 +

b2(β0)

n2
+
b3(β0)

n3
+ . . . ,

corrects the bias of β̂ up to order O(n−1). This is the line of argument behind the corrective
methods. Cox & Snell (1968, §3) derived the expression for b1(β0)/n for a very general
family of models. Anderson & Richardson (1979) and Schaefer (1983), based upon the
results in Cox & Snell (1968), calculated the first-order bias terms for logistic regressions
and obtained the bias-corrected estimates. Both studies conclude that bias-correction
is desirable because for such models the bias of the ML estimator is large for small and
moderate sample sizes. They also note that, in that particular case, the mean squared error
(MSE) beneficially shrinks along with the bias of the estimator. Cordeiro & McCullagh
(1991) extended these results and treated bias-correction for the class of generalized linear
models (GLMs, Nelder & Wedderburn, 1972). They showed that bias-correction can be
achieved by means of a supplementary re-weighted least squares iteration and gave several
interesting results on the behaviour of the bias in binomial-response models. These results
demonstrate the beneficial — in terms of bias and MSE — shrinkage of the bias-corrected
estimates towards the origin of the scale imposed by the link function.

However, the bias-corrected estimates depend upon the finiteness (existence, in the
terminology in Albert & Anderson, 1984) of the ML estimates. By definition, the bias-
corrected estimates are undefined when the ML estimates are infinite. This is the case
for many categorical-response models and is associated with the configuration of zero
observations for the response (Albert & Anderson, 1984; Santner & Duffy, 1986; Lesaffre
& Albert, 1989, study and classify such configurations for logistic regression models).
Further, for small sample sizes the bias-correction method tends to correct beyond the
true parameter value. This is illustrated through the empirical studies in Bull et al. (1997)
where they compare bias correction with a bias-reduction method for logistic regressions.

1.1.2 Bias reduction

The main difference between bias correction and bias-reduction methods is that the latter
do not directly depend on the ML estimates. Instead, new estimators are derived which
are known to have smaller or even zero first-order term in the asymptotic expansion of
their bias. In this sense the nature of these methods is bias-preventive rather than bias-
corrective. A popular estimator of this kind is the Haldane estimator (Haldane, 1956). If
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y is the observed number of successes in a binomial trial with total m and probability of
success π, the ML estimator of the log-odds β = log(π/(1 − π)) is

β̂ = log
y

m− y
.

Haldane (1956) showed that a simple replacement of y with y∗ = y + 1/2 and m with
m∗ = m + 1 in the above expression results in an estimator for β which is free of the
first-order bias term (see also Cox & Snell, 1989, §2.1.6).

1.1.2.1 Jackknife estimators

Quenouille (1956) was the first to develop a bias-reduction method that is applicable to
general families of distributions. This is the jackknife procedure which aims the removal of
bias terms up to a specified order. An important reference point for this method is Farewell
(1978), who shows that the jackknife estimator can be improved by the reflection of any
special structure of the data (for example, fixed totals for contingency tables, fixed sample
size ratio in two sample problems, etc.) directly in the jackknife calculations. However, if
the ML estimator is not in closed form, jackknifing can become expensive because the ML
estimates have to be obtained iteratively for each of all the possible subsets of the sample
according to the partitioning scheme considered. Further, several considerations have to
be made in cases where the ML estimates for a subset of the sample are infinite. In the
case of logistic regression, Bull et al. (1997, §3.2) deal with this problem but in a rather
ad-hoc way. As seen therein, these methods reduce the first-order bias term but they do
not eliminate it.

1.1.2.2 Estimators based on modified score functions

For a very special scalar-parameter item response theory model, Warm (1989) derives
an alternative bias-reduction method that is free from the defects of bias-correction and
jackknifing. Based on a conjecture which is proved later in the same paper, Warm (1989)
gives the form for a modified score function which results in an estimator with bias of
order o(n−1) and notices the possible extensions to more general families.

Starting from a rather different point than Warm (1989) and based upon formal asymp-
totic arguments for regular families, Firth (1993) developed a general method for removing
the first-order term in the asymptotic expansion of the bias of the ML estimator. The effi-
cient score functions are appropriately modified so that the roots of the resultant modified
score equations result in first-order unbiased estimators. He showed that for exponential
families in canonical parameterization, the method reduces to penalization of the likelihood
function by the Jeffreys invariant prior (Jeffreys, 1946). The application of the method in
generalized linear models (GLMs) with canonical link is studied in Firth (1992a,b), and
emphasis is given on the properties of the resultant estimator in some special but important
cases such as binomial logistic regression models, Poisson log-linear models and Gamma
reciprocal-linear models. For these models, it is demonstrated how the bias-reduction
method can be implemented by appending appropriate flattening quantities to the re-
sponses, at each step of the iterative re-weighted least squares (IWLS) fitting procedure.
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However, the main advantage of the method is not the facility of obtaining estimates, but
the properties that the bias-reduced estimator can have for specific models.

Heinze & Schemper (2002) and Zorn (2005) studied the behaviour of the bias-reduced
estimator in the canonical case of binary-response logistic regression. Based on empirical
findings they note that the bias-reduced estimates are always finite, even in cases where
the ML estimates are infinite. They also indicate that the bias-reduced estimates shrink
towards the origin of the logistic scale. Bull et al. (2002), through simulation studies,
extended the conclusions in Heinze & Schemper (2002) to multinomial responses. They
also performed an empirical comparison of the bias-reduced estimator with estimators
based on jackknifing and on bias correction. This comparison concluded in favour of the
estimator based on the modified scores, both in terms of bias and MSE. Similar conclusions
can be found in Mehrabi & Matthews (1995) where the modified score functions are
used for estimation in a scalar-parameter complementary log-log model with non-linear
predictor. Heinze & Schemper (2002) and Bull et al. (2007) went further and illustrated
that confidence intervals based on the ratio of penalized likelihoods (with penalization by
Jeffreys prior) seem to outperform Wald-type confidence intervals and intervals based on
the ordinary likelihood ratio, in terms of coverage.

1.2 Outline

The recent applied and methodological interest (Mehrabi & Matthews, 1995; Heinze &
Schemper, 2002; Bull et al., 2002, 2007; Zorn, 2005) motivates the in-depth study of
the bias-reduction method (Firth, 1993) and the derivation of general expressions for
the modified score functions in the case of exponential family models. Furthermore, the
beneficial improvement in estimation for logistic regressions (Heinze & Schemper, 2002;
Bull et al., 2002, 2007; Zorn, 2005) and in complementary log-log models (Mehrabi &
Matthews, 1995), points towards the direction of an extensive study of the behaviour of
the BR estimator in categorical response models.

The current thesis is organized in the following way. In Chapter 2, we set up some
of the notation that is used throughout the thesis and we give a brief description of the
class of exponential family non-linear models. It is a very wide class of parametric models
including as special cases both univariate and multivariate generalized linear models, as
well as more general nonlinear regressions in which the variance has a specified relationship
with the mean.

In Chapter 3 we review the bias-reduction method and we explore, from a theoretical
point of view, several aspects of the bias-reducing modifications to the efficient score func-
tions. Furthermore, we derive explicit expressions for the modified scores for exponential
family non-linear models. These expressions facilitate the application and study of the
bias-reduction method for more general models than the ones already considered in the
literature. The main theoretical results in this chapter are derived using index notation
and the Einstein summation convention. For a complete treatment of such notation and,
generally, tensor methods in statistics, see McCullagh (1987) and Pace & Salvan (1997,
Chapter 9). Also, Appendix A is recommended for a short — but sufficient for the contents
of the thesis — account of index notation and tensors.
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Chapter 4 is the starting point of our treatise on models for categorical responses. We
present a systematic and theoretical treatment on logistic regression, both for binomial
and multinomial responses. We formally prove the finiteness and shrinkage properties
of the bias-reduced estimator, filling the theoretical gaps in Heinze & Schemper (2002),
Zorn (2005) and Bull et al. (2002), and we exploit the beneficial impact of the shrinkage
effect on the variance and MSE of the bias-reduced estimator. Additionally, the easy
implementation of the bias-reduction method is shown. Summing up, we conclude that
the bias-reduction method should be regarded as an overall improvement over traditional
ML.

In Chapter 5 we deviate from the case of exponential families in canonical parameter-
ization. The bias-reduction method is applied and evaluated

i) in binomial-response GLMs with non-canonical link functions and

ii) in two commonly-used item response theory models.

For obtaining the bias-reduced estimates, we propose a fitting algorithm that uses already
implemented software via pseudo-data representations. Furthermore, for every case, the
properties of the bias-reduced estimator are explored, with particular emphasis on shrink-
age.

Chapter 6 presents results that are intended to be used for further research in the
area. The expansions therein are interesting in their own right and can be used to derive
alternative modifications to the score function, which in turn could result in classes of
estimators with certain improved properties.

A summary of the main results is given in Chapter 7, and we indicate some related
open topics for further work in the area.

Appendix B includes proofs of some theorems and the algebraic derivations of sev-
eral results presented in the main text. Lastly, Appendix C contains four long tables of
estimates that are referred to in the main text.

For the reader’s convenience, Figure 1.1 presents a schematic representation of the
organization of the thesis contents.
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Figure 1.1: Schematic representation of the organization of the contents of the thesis.
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Chapter 2

An outline of exponential

family non-linear models

2.1 The components of an exponential family non-linear model

In this chapter we introduce the class of exponential family non-linear models with known
dispersion. It is a very wide class of parametric models including as special cases both
univariate and multivariate generalized linear models (GLMs), as well as more general
non-linear regressions in which the variance has a specified relationship with the mean.
Classical multivariate examples in this class are multinomial logistic regression models
and non-linear extensions of them. Our main aims are i) to review some standard results
for exponential family non-linear models and ii) to introduce some of the notation used
throughout the thesis. For a detailed technical treatment and study of the geometry of
these models the reader is referred to Wei (1997). Also, McCullagh & Nelder (1989) and
Fahrmeir & Tutz (2001) are the standard statistical textbooks for GLMs for univariate
and multivariate responses, respectively.

2.1.1 Description of the model

Consider a q-dimensional random variable Y in a sample space Y. We say that Y has a
distribution function F (y|θ, λ) from the exponential family of distributions F if and only
if its corresponding density or probability mass function has the general form,

f(y|θ, λ) = exp

{

yT θ − b(θ)

λ
+ c(y, λ)

}

, (2.1)

where c(y, λ) ≥ 0 and measurable and b(θ) is a scalar-valued function of the q-vector θ.
The requirement of measurability for the function c(y, λ) is necessary in order to have a
well defined density on Y.

The parametric family F indexed by θ is subject to the following conditions:
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i) θ ∈ Θ and Θ is a subset of ℜq with q finite,

ii) λ ∈ Λ and Λ is an open subset of ℜ+.

iii) The probability distributions defined by any two different values of θ are distinct
elements of F ,

iv) The inequality

0 <

∫

Y

exp

{

yT θ

λ
+ c(y, λ)

}

dy <∞ ,

holds. Given the defining property of the density f of having unit integral over
Y with respect to y, the above inequality ensures the existence and finiteness of
b(θ). In the case of vectors of discrete random variables, the integral corresponds to
summation of the integrand values over the sample space Y.

For given λ, which is the case we are considering in the thesis, Jørgensen (1987) calls
(2.1) the defining form of the densities in a linear exponential family. Then, θ is called the
canonical parameter and Θ is the canonical parameter space. Furthermore, for given λ, it
is easily proved that y is sufficient for θ.

Under the previous assumptions and definitions, the cumulant generator b(θ) of the
family is analytic in the interior of Θ (int Θ) and all moments of Y exist. Emphasis is
given to the first three derivatives of b(θ) from which we obtain the identities

E(Y ; θ) = µ∗(θ) = ∇θb(θ) , (2.2)

Cov(Y ; θ) = Σ∗(θ) = λD2 (b(θ); θ) , (2.3)

Cum3(Y ; θ) = K∗(θ) = λ2D2 (µ∗(θ); θ) , (2.4)

where Cum3(Y ; θ) is the q2 × q matrix of third order cumulants of Y , as a function of θ,
and D2 (b(θ); θ) stands for the q× q Hessian of b(θ) with respect to θ . Generally, in what
follows, if a and b are p and q dimensional vectors, respectively, D (a; b) is the p× q matrix
of first derivatives of a with respect to b and D2 (a; b) is a pq × q blocked Hessian matrix
of the second derivatives of a with respect to b, having blocks the q× q matrices D2 (ai; b),
i = 1, . . . , p (see Appendix B, Section B.1 for analytic description).

The covariance matrix Σ∗(θ) is assumed to be positive definite in int Θ. Furthermore

µ∗ : int Θ −→ M ≡ µ∗(int Θ)

is injective (one-to-one), and hence invertible. If we denote by θ∗(µ) the inverse of µ∗ and
substitute into (2.3), the variance-covariance matrix of Y can be written as a function of
the expectation µ and the dispersion parameter λ,

Cov(Y ;µ) = λv(µ) = λ D2 (b(θ); θ)
∣

∣

θ=θ∗(µ)
,

where v(µ) is called the variance function.
An exponential family non-linear model (sometimes referred to as a generalized non-

linear model) consists of three components:
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i) Random component : The random variable Y has density or probability mass func-
tion f(y|θ, λ) of the form (2.1).

ii) Systematic component : The systematic part of the model is a function η of the
p-vector of parameters β, and η(β) takes values in an open subset of ℜq. The
parameter vector β belongs to the parameter space B which is an open subset of
ℜp. Furthermore, the predictor function η(β) is assumed to be at least three times
continuously differentiable with respect to β.

iii) Linking structure : The expectation µ of Y is linked with the systematic part η(β)
through an assumed vector-valued function g : M → ℜq,

g(µ) = η(β) . (2.5)

The link function g is assumed to be monotonic and differentiable up to third order.

By the structure of a generalized non-linear model, the canonical parameter θ is related
to the predictor η(β) through the function u = (g ◦ µ∗)−1 = θ∗ ◦ h, with h the inverse of
the function g. So,

θ = u(η(β)) = θ∗(h(η(β))) . (2.6)

Hence, by the monotonicity of the link function and the fact that the mapping µ∗
is injective, the predictor η indexes the family of distributions F , and the probability
distributions defined by any two different values of η are distinct elements of F .

Note that if we set η(β) = Zβ in (2.5), where the q× p matrix Z = Z ′(x) is an appro-
priate function of a known covariate p′-vector x not depending on β, (2.5) corresponds to
a multivariate GLM (see Fahrmeir & Tutz, 2001, for a thorough study). Furthermore, if
we drop the dimension of the response to q = 1, we obtain a univariate GLM.

2.1.2 Canonical link functions

Consider the case of a link function g such that (2.5) takes the form

θ = g(µ) = η(β) . (2.7)

Such link function will be called canonical. This definition of canonical links is parallel
to the corresponding definition for GLMs, in the sense that the canonical parameter θ is
equated to the predictor η. However, the familiar property that there exists a sufficient
statistic having the same dimension as β is no longer generally valid, because curvature
is introduced to the family of distributions by the non-linearity of the predictor η. On
the other hand, in the case of a linear predictor η(β) = Zβ, there is always a sufficient
statistic T such that dimT = dimβ = p and the model corresponds to a flat exponential
family in canonical parameterization.

Furthermore, we can always represent a GLM with general link function as a general-
ized non-linear model with canonical link. So, if a GLM has the form

g(µ) = η(β) = Zβ ,
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with Z a q × p matrix not depending on β, then the equivalent canonically-linked gener-
alized non-linear model will have the form

θ = η̃(β) = θ∗(h(Zβ)) ,

where the functions θ∗ and h are as defined earlier.

2.2 Notational conventions

Because of the multivariate nature of the responses in the generic setup of generalized
non-linear models, sequences of matrices or multidimensional arrays appear as quantities
of interest under repeated sampling. This suggests the introduction of a notational frame-
work that enables us to write multidimensional arrays as matrices with certain blocking
structure, in a consistent way.

Consider a sequence of 3-way arrays {Er; r = 1, . . . , k}. Each array Er is a 3-way
arrangement of scalars erstu with s = 1, . . . , l, t = 1, . . . ,m and u = 1, . . . , n. Note that
the scalar components of Er are denoted by lower case letters. Generally, in what follows
the scalar components of an array will be denoted by the corresponding lower case letters.
The array Er can be represented as a lm× n blocked-matrix having the form

Er =











Er1

Er2
...
Erl











,

with Ers a m× n matrix. Writing Erst we denote the t-th row of the matrix Ers as a row
vector, i.e., having dimension 1 × n.

Similarly, consider a sequence of 4-way arrays {Er; r = 1, . . . , k}. Such array Er is
a 4-way arrangement of scalars erstuv with s = 1, . . . , l, t = 1, . . . ,m, u = 1, . . . , n and
v = 1, . . . , q. The array Er can be represented as a ln ×mq blocked-matrix having the
form

Er =











Er11 Er12 · · · Er1m

Er21 Er22 · · · Er2m
...

...
. . .

...
Erl1 Ern2 · · · Erlm











,

with Erst a n × q matrix. Writing Erstu we denote the u-th row of the matrix Erst as a
row vector, i.e. having dimension 1 × q.

Similar conventions are used for 2-dimensional arrays or matrices. So, if we consider
the sequence of l×m matrices {Er; r = 1, . . . , k} then each Er is an arrangement of scalars
erst with s = 1, . . . , l, t = 1, . . . ,m. In this case, Ers denotes the s-th row of Er, as a row
vector, i.e. having dimension 1 ×m.

Under these notational conventions, we should stress the difference in the assignment
of dimensions between a q-vector µr that has dimension q × 1 and the s-th row of a p× q
matrix Er denoted as Ers having dimension 1 × q.
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In what follows, the blocking-structure and dimensions of any quantity will be clearly
stated or will be clear directly from the context.

Lastly, unless otherwise stated, all the algebraic structures that are functions of the
parameters β are denoted simply by the corresponding letter. For example, consider a
p× p matrix Qt(β). This is denoted just as Qt.

2.3 Likelihood related quantities

2.3.1 Log-likelihood function

Consider realizations y1, y2, . . . , yn of independent random variables Y1, Y2, . . . , Yn from
the exponential family of distributions (2.1). In the light of these observations, the log-
likelihood function for the parameters β of an exponential family non-linear model with
known dispersion parameter is the sum of n independent contributions,

l ≡ l(β|{yr}, λ) ≡ log
∏

r

f(yr|β, λr) =
∑

r

{

yT
r θr − b(θr)

λr
+ c(yr;λr)

}

, (2.8)

where θr is related to β as in (2.6), i.e. θr = θr(β) = u(ηr(β)), and λr is known for
every r = 1, . . . , n. Further, the term c(yr;λr) does not depend on β and thus it can be
omitted from the summands of the log-likelihood for obtaining the maximum likelihood
(ML) estimator.

The usual regularity conditions, in the spirit of the ones in Cramér (1946, §33.2) (see
also Cox & Hinkley, 1974, §9.1) apply to this case as follows:

i) The admissible parameter space B is an open subset of ℜp.

ii) The parameter space B does not depend on the sample space Y.

iii) h(ηr(β)) ∈ M = µ∗(int Θ), r = 1, . . . , n, for all β ∈ B.

iv) Two different values of β correspond to two different members of the family of
distributions F .

v) The log-likelihood function is almost surely three times continuously differentiable
with respect to β in some neighbourhood of the true value β0. Further, for ǫ > 0
and for all β in the ball |β − β0| < ǫ,

n−1

∣

∣

∣

∣

∂3l(β)

∂βs∂βtdβu

∣

∣

∣

∣

≤ astu (s, t, u = 1, . . . , p) ,

with astu finite and E(astu) <∞.

Condition v) ensures the continuity of the first three derivatives of the log-likelihood.
Specifically, condition v) plays a crucial role in establishing the asymptotic normality of
the ML estimator. Condition ii) ensures that the processes of integration over the sample
space Y and differentiation with respect to β can be interchanged. Conditions iii) and
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iv) are necessary for a well-defined generalized non-linear model. Especially condition iv)
ensures that given a fixed parameterization β for the model, inferences based on some
specific value of β cannot be the same for any other values. For the models considered in
the thesis i), ii), iii) and v) are satisfied. In the case of linear predictors, the requirement of
identifiability (condition iv)) can be easily satisfied, for example by using an appropriate
set of linear constraints on β with direct impact on the rank of the design matrix (see, for
example, McCullagh & Nelder, 1989, §3.5). However, for any given model with non-linear
predictor, the identifiability requirement should be carefully examined and verified.

2.3.2 Score functions

The score vector for the parameters β of an exponential family non-linear model with
known dispersion has the form

U =
∑

r

ZT
r DrΣ

−1
r (yr − µr) ,

where Zr = D (ηr;β), DT
r = D (µr; ηr), and µr = E(Yr;β), Σr = Cov(Yr;β) are as defined

in (2.2) and (2.3), respectively. For the analytic derivation of the vector of score functions
see (B.2) in Appendix B. Re-expressing the above equation in terms of the matrix of
‘working weights’ Wr = DrΣ

−1
r DT

r , we can obtain the alternative equivalent expression

U =
∑

r

ZT
r WrD (ηr;µr) (yr − µr) . (2.9)

The working (or quadratic) weight matrix Wr for generalized non-linear models is defined
exactly as for the case of GLMs (see, for example, Fahrmeir & Tutz (2001, Appendix
A.1) for the multivariate case or McCullagh & Nelder (1989, Section 2.5.1) for univariate
GLMs) and plays an important role in ML fitting procedures, such as iterative generalized
least squares.

From (2.9), it is clear that the score functions have zero expectation, since the responses
appear in the equations only through their centered form Yr − µr. This result is usually
referred to as the unbiasedness of the score function and it is standard in ML theory under
the aforementioned usual regularity conditions.

If the log-likelihood function is concave on β, the ML estimator β̂ is the solution of
the likelihood equations

U(β̂) = 0 .

2.3.3 Information measures

By the usual differentiation rules and the independence of Y1, Y2, . . . , Yn, the observed
and the Fisher information matrices are sums of n independent contributions. For the
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observed information on β we have

I =
∑

r

ZT
r WrZr −

∑

r

q
∑

s=1

λ−1
r ZT

r VrsZr(yrs − µrs) (2.10)

−
∑

r

q
∑

s,u=1

D2 (ηru;β) krsu(yrs − µrs) ,

where Vrs = D2 (θrs; ηr) and krsu is the (s, u)-th element of the matrix Σ−1
r DT

r .
Under the validity of the Bartlett identities (see Appendix B, Section B.1), the Fisher

(or expected) information F on β can be obtained as the expectation of the expression in
(2.10). Because the two last terms in the right hand side of (2.10) have zero expectation,
we have that

F = E(I) =
∑

r

ZT
r WrZr . (2.11)

The derivations of the above formulae are given analytically in Section B.1 of Appendix B.
For canonically-linked models, Vr = D2 (θr; ηr) = 0 and Dr = λ−1

r Σr. So, (2.9), (2.10)
and (2.11) are considerably simplified, taking the forms

U =
∑

r

λ−1
r ZT

r (yr − µr) , (2.12)

F =
∑

r

λ−2
r ZT

r ΣrZr ,

I = F −
∑

r

q
∑

s=1

D2 (ηrs;β) (yrs − µrs) .

For linear predictors η(β), the score functions have the same form as in (2.9), the
only difference being that Zr is no longer a function of β rather than some appropriate
function of a p′-vector of covariates x. The same applies to the Fisher information given
in (2.11). The significant change is noted in the formulae for the observed information.
Except for the difference in the nature of Zr’s, the last term in the right hand side of
(2.10) vanishes because D2 (ηr;β) is zero for linear predictors. In the case of GLMs with
canonical link, the same simplifications apply to the expressions in (2.12). Nevertheless,
such models are exponential families in canonical parameterization, and thus the Hessian
of the log-likelihood with respect to β does not depend on Yr’s. Hence, the Fisher and the
observed information coincide.

2.4 Fitting exponential family non-linear models

The most standard fitting procedure used for maximizing the log-likelihood for expo-
nential family non-linear models is Fisher scoring; see for example McCullagh & Nelder
(1989, §2.5) for a description for univariate GLMs and Fahrmeir & Tutz (2001, §3.4.1) for
multivariate GLMs.
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In the univariate case, Fisher scoring can be viewed as an iterative re-weighted least
squares (IWLS) procedure; see for example Agresti (2002, §4.6.3) for a thorough descrip-
tion of the connection. However, in the multivariate case, the generalization of the same
method corresponds to iterative generalized least squares (IGLS) because the working
weight matrix is block diagonal rather than diagonal as in the univariate case.

2.4.1 Newton-Raphson and Fisher scoring

Consider a first-order Taylor approximation to the likelihood equations U(β̂) = 0,

0 = U(β̂) ≈ U(β0) − I(β0)(β̂ − β0) ,

with I(β0) the observed information matrix at the true unknown parameter value β0.
Re-expressing in terms of β̂ we get

β̂ ≈ β0 + {I(β0)}−1 U(β0) ,

which suggests the Newton-Raphson iteration,

β(c+1) = β(c) + {I−1U}(c) , (2.13)

with β(c) the parameter value at the c-th iteration, and for {I−1U}(c), the subscript (c)
denotes evaluation at β(c).

If we replace the observed information I with the expected information F in the right
hand side of (2.13), we obtain the Fisher scoring iteration

β(c+1) = β(c) + {F−1U}(c) . (2.14)

Given good starting values and the concavity of the log-likelihood function, ML esti-
mates can be obtained using either iteration (2.13) or iteration (2.14), until an appropriate
stopping criterion is satisfied; for example, the change to the value of the log-likelihood
function between successive iterations is sufficiently small.

Comparing the two alternative fitting procedures which are defined by iterations (2.13)
and (2.14), Fisher scoring produces an estimate of the asymptotic variance-covariance
matrix of the ML estimator as its byproduct, namely the inverse of the Fisher information
evaluated at the last iteration. Also, the Fisher information is necessarily non-negative
definite and so iteration (2.14) can never cause a decrease to the log-likelihood function.
Further, there is a neat equivalence between Fisher scoring and the generalized least
squares method for ordinary linear regressions. However, despite the conveniences, Fisher
scoring does not guarantee that the convergence to the ML estimates is at quadratic rate
as the Newton-Raphson fitting procedure does.

There is a vast repository of alternative optimization methods as well as modifications
of the Newton-Raphson and Fisher scoring methods, each with its own advantages (see
for example Monahan, 2001). The choice of fitting procedure is highly model dependent.
In the case of exponential family non-linear models the expected information has a much
simpler form than the observed (compare (2.11) with (2.10)) and thus Fisher scoring is
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preferable to Newton-Raphson. However, there might be non-linear models where even the
expected information is hard or expensive to evaluate. In this case, quasi-Newton methods
provide a good alternative approach, where the Hessian for a Newton-Rapshon iteration
does not need to be specified and an approximation is used instead. A well-used example
is the variable metric algorithm or ‘BFGS’ method (see Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970) which is well-implemented through the optim function in
R language (R Development Core Team, 2007).

2.4.2 Fisher scoring and iterative generalized least squares

To illustrate the equivalence between Fisher scoring and IGLS, consider the ‘working
observation’ vector

ζr = Zrβ + (DT
r )−1 (yr − µr) , (2.15)

with scalar components ζr1, ζr2, . . . , ζrq. In the case of multivariate GLMs, where Zr does
not depend on β, ζr is the locally linearized form of the link function g evaluated at
yr. Note that the Fisher information for an exponential family non-linear model can be
written as

F =
∑

r

ZT
r WrZr = ZTWZ ,

where ZT = (ZT
1 , . . . , Z

T
n ) is a blocked matrix of dimension p× nq and W is the nq × nq

block-diagonal matrix, with diagonal blocks the matrices of working weights Wr, r =
1, . . . , n. Thus, by (2.15), the equivalent IGLS iteration to (2.14) is

{ZTWZ}(c)β(c+1) = {ZTWζ}(c) (2.16)

so that
β(c+1) =

{

(ZTWZ)−1ZTWζ
}

(c)
, (2.17)

where ζ = (ζr1, . . . , ζrq, . . . , ζn1, . . . , ζnq)
T . Ignoring the subscript (c), equations (2.16) are

the normal equations for fitting a multivariate response linear model with response vector
ζ, model matrix Z and normal errors with zero expectation and variance covariance matrix
W−1, all evaluated at the c-th iteration.

2.4.3 Hat matrix

For the special case of multivariate GLMs, where Zr does not depend on the parameters,
iteration of the above scheme regresses ζ(c) on Z using the weight matrix W(c), to obtain
a new estimate β(c+1) through (2.17). Then this estimate is used to calculate a new
linear predictor value η(c+1) = Zβ(c+1) = H(c)β(c) and hence new working observations
ζ(c+1) using (2.15). The cycle is continued until some appropriate convergence criterion is
satisfied.

The matrix
H = Z

(

ZTWZ
)−1

ZTW

is the projection or ‘hat’ matrix that has the well-known leverage interpretation in linear
models. For multivariate GLMs, the n2 blocks of H can be still used as generalized
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influence measures (Fahrmeir & Tutz, 2001, §4.2.2), but its key characteristic is that it
projects the current working observation to the next value of the linear predictor in an
IGLS iteration. In the case of univariate generalized non-linear models, Wei (1997, §6.5)
proposes an alternative generalized leverage measure which is based on the instantaneous
rate of change of the predictions for the response relative to the observed response values
and seems to have a more natural interpretation than H. However, the performance of
alternative influence measures is out of the scope of this thesis. Despite its questionable
leverage interpretation for exponential family non-linear models, the hat matrix H is
going to play an important role in the results of later chapters. The reasons for this are
i) algebraic convenience and ii) the fact that H is readily available from the quantities
required for the implementation of the IGLS fitting procedure.
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Chapter 3

A family of modifications to the

efficient score functions

3.1 Introduction

The most common estimation method in the frequentist school is maximum likelihood
(ML). The reasons for this are mainly the neat asymptotic properties of the ML estimator
(asymptotic normality, asymptotic sufficiency, unbiasedness and efficiency) and further
the easy implementation of fitting procedures. However, there are cases where the ML
estimator can have appreciable bias, especially when the sample size is small, resulting
in potentially misleading inferences. Cordeiro & McCullagh (1991) derived explicit ex-
pressions for the asymptotic bias of the ML estimator in the case of univariate generalized
linear models (GLMs) and showed how the first-order (O(n−1)) term in the asymptotic ex-
pansion of the bias of the ML estimator could be eliminated by a supplementary weighted
regression. However, such bias correction depends upon the existence of the ML estimates
and so it does not apply, for example, to situations where the ML estimates are found
to be infinite-valued. Motivated partly by this, Firth (1993) developed a fairly general
method for removing the first-order (O(n−1)) term in the asymptotic expansion of the
bias of the ML estimator. Specifically, for regular problems the efficient score functions
are appropriately modified such that the roots of the resultant modified score equations re-
sult in first-order unbiased estimators. Firth (1993) studied the case of canonically linked
GLMs, emphasizing the properties of the bias-reduced (BR) estimator in some special but
important cases such as binomial logistic regression models, Poisson log-linear models and
Gamma reciprocal-linear models (Firth, 1992a,b). Heinze & Schemper (2002) through
empirical studies verified the properties of the BR estimator for binomial logistic regres-
sion models and illustrated the superiority of profile penalized-likelihood based confidence
intervals over Wald-type intervals. Similar studies have been carried out by Mehrabi &
Matthews (1995) who applied the bias-reduction method to a binomial-response comple-
mentary log-log model, and by Bull et al. (2002) who evaluated it on multinomial logistic
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regression. In all these cases, they conclude on the superior properties of the BR estimator
relative to the ML estimator.

In this chapter we give a brief description of the bias-reduction method as given in
Firth (1993). The general results in the latter paper are quoted in index notation and using
Einstein summation convention; for a complete treatment of such notation and, generally,
tensor methods in statistics see McCullagh (1987), Pace & Salvan (1997, Chapter 9) or
for a short — but sufficient for the contents of the thesis — account, Appendix A. For
our purposes, there will be an interchange between index notation under the conventions
of Appendix A and usual matrix notation under the notational conventions of Section 2.2.
Whenever such an interchange takes place, it will be clearly stated. We re-express the
results in Firth (1993) in usual matrix notation and for the case of a scalar-parameter
statistical problem, we study the relation of the modified scores with statistical curvature
(Efron, 1975). Further, we derive a necessary and sufficient condition on the existence
of a penalized likelihood corresponding to the modified scores and we comment on the
consistency and asymptotic normality of the BR estimator.

Lastly, motivated by the recent applied and methodological research interest in the pe-
nalized likelihood approach to bias reduction (e.g., Heinze & Schemper, 2002; Bull et al.,
2002, 2007; Zorn, 2005), we derive explicit formulae for the modified score vector for the
wide class of multivariate-response exponential family non-linear models with known dis-
persion; as mentioned in Chapter 2, this class includes as special cases both univariate and
multivariate GLMs, as well as more general non-linear regressions in which the variance
has a specified relationship with the mean. The formulae derived involve quantities that
are readily available from the output of standard computing packages and they can be
used directly for the implementation of the modified scores approach to bias reduction.
In addition, they can be used theoretically in order to gain insight into the nature of
the modifications — for example, whether their effect is a shrinkage effect or something
potentially less advantageous — in any specific application. This will be the topic of later
chapters.

3.2 Family of modifications. Removal of the first-order asymptotic bias

term from the ML estimator

3.2.1 General family of modifications

Consider a model with parameters the components of the vector β = (β1, β2, . . . , βp).
Assume that, in the light of n realizations of independent random variables, we formulate
the log-likelihood function l(β). Under regularity conditions in the spirit of the ones in
Cox & Hinkley (1974, §9.1), Firth (1993) developed a general family of modifications to
the efficient scores. Therein, it is shown that location of the roots of the modified scores
results in an estimator with second-order (o(n−1)) bias.

Using index notation and under the Einstein summation convention (see Appendix A),
assume we modify the r-th component of the efficient score vector according to

U∗
r = Ur +Ar ,
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where Ar is Op(1) as n→ ∞ and is allowed to depend on the data, and Ur is the ordinary
score. Note that in this case, the letter r indexes parameters (r ∈ {1, 2, . . . , p}) in contrast
to its use for indexing observations under the usual matrix notation in Chapter 2.

Firth (1993) proposed and studied two alternatives for Ar that result in removal of
the first-order term from the asymptotic expansion of the bias of the ML estimator; one
based on the expected information,

Ar = A(E)
r = −κr,sb

s
1 (3.1)

and one on the observed
Ar = A(O)

r = n−1Ursb
s
1 , (3.2)

where
n−1br1 = −n−1κr,sκt,u(κs,t,u + κs,tu)/2 (3.3)

is the first-order term in the asymptotic expansion of the bias of the ML estimator. In the
above formulae the quantities named U refer to log-likelihood derivatives. Thus,

Ur =
∂l(β)

∂βr
; Urs =

∂2l(β)

∂βr∂βs
; Urst =

∂3l(β)

∂βr∂βsdβt
;

and so on. Also, the quantities named κ refer to the null cumulants of log-likelihood
derivatives, per observation

κr,s = n−1E (UrUs) ; κr,st = n−1E (UrUst) ; κr,s,t = n−1E (UrUsUt) ;

and so on. The word ‘null’ is used to indicate that both the operations of differentiation
and expectation take place for the same value of the parameter β. Also, κr,s in (3.3) is
the matrix-inverse of κr,s and all κ’s, as defined above, are O(1) (see Subsection A.4.2 in
Appendix A for a note on the definitions and the calculus of O, Op, o, op). The same
expression for the first-order bias term (3.3) in the single parameter case, is derived in
Cox & Hinkley (1974, §9.2 (vii)).

Under the notational rules of Section 2.2 and letting F and I be the Fisher and observed
information on β, we can express the above results in matrix notation. From (3.1) and
(3.2), removal of the first-order bias term occurs if either

At ≡ A
(E)
t =

1

2
trace

{

F−1(Pt +Qt)
}

(t = 1, . . . , p) (3.4)

or
At ≡ A

(O)
t = ItF

−1A(E) (t = 1, . . . , p) , (3.5)

based on the expected or observed information, respectively. In the above expressions,

A(E) = (A
(E)
1 , . . . , A

(E)
p )T , Pt = E(UUTUt) stands for the t-th block of the p2 × p matrix

of the third order cumulants of the scores, and Qt = E(−IUt) for the t-th block of the
p2 × p blocked matrix of the covariance of the first and second log-likelihood derivatives.
Note that by the symmetry of UUT and I, Pt and Qt are symmetric matrices for every
t = 1, . . . , p. Also, the 1 × p vector It denotes the t-th row of I. All the expectations are
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taken with respect to the model and at β. From (3.3), it is immediate that the vector of
first-order biases can be expressed in terms of A(E) as

n−1b1 = −F−1A(E) . (3.6)

We should mention that according to the derivation of the above modifications (see
Section 6.6 for a detailed derivation), the modifications studied in Firth (1993) are just a
special case of a more general family of modifications. Using index notation, if we let

µr,s = E(UrUs) ; µr,st = E(UrUst) ; µr,s,t = E(UrUsUt) ,

be the joint null moments of log-likelihood derivatives, the generic modifications are defined
as

Ar = esrµ
t,u (µs,tu + µs,t,u) /2 + R̄r , (3.7)

where either etr = (µr,s +Rrs)µ
s,t or etr = (−Urs +Rrs)µ

s,t or etr = (UrUs +Rrs)µ
s,t

and Rrs and R̄r are any quantities that depend on the data and the parameters and
have expectations of order at most O(n1/2) and at most O(n−1/2), respectively. Any
modification that results from the above generic definition results in an estimator with
o(n−1) bias.

We consider only the case where R̄r = 0. In matrix notation, one can write the modi-
fications (3.7), as a weighted sum of the modifications based on the expected information,
defined in (3.4). This allows the modified scores to be written in the general form

U∗
t = Ut +

p
∑

u=1

etuA
(E)
u (t = 1, . . . , p) , (3.8)

where etu is defined as either

etu ≡ e
(E)
tu =

[

RF−1 + 1p

]

tu

or
etu ≡ e

(O)
tu =

[

(I +R)F−1
]

tu

or
etu ≡ e

(S)
tu =

[

(UUT +R)F−1
]

tu
,

with 1p the p×p identity matrix. In order to obtain the modifications based on the Fisher

information (3.4), we merely choose e
(E)
tu in (3.8) and set R = 0, so that etu = 1 for t 6= u

and ett = 1. Also, for obtaining the modifications based on the observed information (3.5),

we just chose e
(O)
tu in (3.8) and setR = 0. Lastly, note that by the weak law of large numbers

both n−1I and n−1UUT converge to n−1F and that RF−1 converges in probability to zero
as n→ ∞, so that every possibility for the modified scores is asymptotically equivalent to

U∗
t = Ut +A

(E)
t .
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3.2.2 Special case: exponential family in canonical parameterization

Now, consider the case where β is the canonical parameter of an exponential family model.
For such flat exponential family the observed information I and the Fisher information F
on β coincide, because the second derivatives of the log-likelihood with respect to β do
not depend on the responses. So, the cumulant matrices Qt = E(−IUt) are zero. Further,
since It does not depend on the data

∂

∂βt
F =

∂

∂βt
E(UUT ) = E(−IT

t U
T ) + E(−UIt) + E(UUTUt) = E(UUTUt) = Pt .

Thus, for Rt = 0,

At = A
(E)
t = A

(O)
t =

1

2
trace

{

F−1 ∂F

∂βt

}

=
∂

∂βt

{

1

2
log detF

}

(t = 1, . . . , p) ,

where detF denotes the determinant of F . Hence, the equations U∗
t = 0 locate a stationary

point of a penalized log-likelihood function of the form

l∗(β) = l(β) +
1

2
log detF (β) ,

which corresponds to a penalized likelihood of the form

L∗(β) = L(β) (detF (β))1/2 . (3.9)

Thus, as noted in Firth (1993), the bias-reduction method in the case of flat exponen-
tial family models reduces to penalization of the likelihood function by Jeffreys invariant
prior (Jeffreys, 1946). From a Bayesian point of view, obtaining the maximum penalized
likelihood estimates is equivalent to obtaining the posterior mode using Jeffreys invariant
prior.

3.2.3 Existence of penalized likelihoods for general exponential families

A natural question that arises in this context is about the existence of penalized likelihoods
that correspond to the modified scores in the case of general exponential families. By
‘existence’ we mean that there is a unique —up to a multiplicative constant not depending
on the parameters— function of the parameters that is the integral of the modified scores.
As in the case of existence of quasi-likelihoods in McCullagh & Nelder (1989, § 9.3.2), a
necessary and sufficient condition for the existence of a penalized likelihood is that the
derivative matrix of U∗(β) is symmetric. Using index notation, this condition translates
to

∂U∗
r (β)

∂βs
=
∂U∗

s (β)

∂βr
,
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where the indices r and s take values in {1, 2, . . . , p}. Applying the theorem in Skovgaard
(1986) for the differentiation of cumulants of log-likelihood derivatives (see Theorem A.4.1
in Appendix A) we have that

∂

∂βr
µs,t = µrs,t + µs,rt + µr,s,t ,

so that the modified scores based on the expected information can be re-expressed as

U∗
r = Ur +

1

2
µs,t(µr,st + µr,s,t) (3.10)

= Ur +
1

2
µs,t ∂

∂βr
µs,t +

1

2
µs,t(µr,st − µrs,t − µrt,s)

= Ur +
1

2
µs,t ∂

∂βr
µs,t +

1

2
µs,t(µr,st − 2µrs,t) .

The second term in the right hand side of the latter expression is the derivative of the
logarithm of the Jeffreys prior and Ur are the derivatives of a proper log-likelihood. So, the
existence of penalized log-likelihoods depends solely on the symmetry of the derivatives,
Trs, of the third term. These derivatives are

Trs =
∂

∂βs

{

µt,u(µr,tu − 2µrt,u)
}

= µt,u ∂

∂βs
(µr,tu − 2µrt,u) − µt,wµu,v (µr,tu − 2µrt,u)

∂

∂βs
µw,v

= µt,u (µrs,tu + µr,stu + µr,s,tu − 2µrst,u − 2µrt,su − 2µrt,s,u)

− µt,wµu,v (µr,tu − 2µrt,u) (µsw,v + µw,sv + µs,w,v) .

Hence,

Trs = µt,u (µrs,tu + µr,stu + µr,s,tu − 2µrst,u − 2µrt,su − 2µrt,s,u) (3.11)

+ µt,wµu,v (µr,tuµswv − 2µrt,uµswv + µr,tuµs,wv − 2µrt,uµs,wv) .

This last expression results from the use of the third order Bartlett identity (see (A.5) in
Appendix B) which ensures that

µswv + µs,wv = −µsw,v − µw,sv − µs,w,v .

In (3.11) the terms µt,u (µrs,tu + µr,s,tu − 2µrst,u − 2µrt,su) and µt,wµu,vµr,tuµs,wv are sym-
metric under interchanges of the indices r and s. The remainder is

µt,u (µr,stu − 2µrt,s,u) + µt,wµu,v (µr,tuµswv − 2µrt,uµswv − 2µrt,uµs,wv) , (3.12)

which is not guaranteed to be symmetric. Thus the integral of the modified scores is
not path independent, and so for general exponential families the existence of a pseudo-
likelihood corresponding to the modified scores is not guaranteed. Specifically, a pseudo-
likelihood corresponding to the modified scores exists if and only if (3.12) is invariant
under interchanges of r and s.
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3.3 The bias-reduction method and statistical curvature

Given that the integral of the modified scores based on the Fisher information exists,
expression (3.10) corresponds to a penalized likelihood of the form

“likelihood” × “Jeffreys prior” × “extra penalty” .

Also, by (3.9), in the case of flat exponential families, the extra penalty term disappears,
which suggests that the bias-reduction method depends on the curvature of the family.
The following example illustrates this argument.

Using standard notation, assume that Fβ is indexed by a scalar parameter β. Further,
assume we formulate the log-likelihood l(β) and obtain the score functions U(β) for β.
The modified score function using expected information is

U∗(β) = U(β) +
µ1,1,1(β) + µ1,2(β)

2µ1,1(β)
,

where

µr(β) = E

(

∂rl

∂βr

)

; µr,s(β) = E

(

∂rl

∂βr

∂sl

∂βs

)

(r, s = 1, 2, . . .) ,

and so on. By (3.10), U∗(β) can be written in the form

U∗(β) = U(β) +
1

2

d

dβ
log µ1,1(β) − 1

2

µ1,2(β)

µ1,1(β)
.

On the other hand, according to Efron (1975), the statistical curvature of Fβ is,

γβ =

(

µ2,2(β)

µ1,1(β)2
− 1 − µ1,2(β)2

µ1,1(β)3

)1/2

.

Since µ1,1(β) > 0, the dependence of U∗ to the statistical curvature is revealed through
the expression

U∗(β) = U(β) +
1

2

d

dβ
log µ1,1(β) (3.13)

− 1

2
sgn (µ1,2(β))

(

µ2,2(β)

µ1,1(β)
− µ1,1(β)(1 + γ2

β)

)1/2

,

where sgn(x) is −1 if x < 0, 0 if x = 0 and 1 if x > 0. The roots of (3.13) are stationary
points of

l∗(β) = l(β) +
1

2
logF (β) +

1

2
ψ(β) ,

where F = µ1,1 is the expected information on β and the function ψ is understood as the
solution of the differential equation

dψ

dβ
= − sgn (µ1,2(β))

(

µ2,2(β)

µ1,1(β)
− µ1,1(β)(1 + γ2

β)

)1/2

.
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If Fβ is a flat subset of a wider exponential family F , then γβ = 0 and µ2,2 = µ2
1,1 so that

ψ(β) = −
∫ β

a
sgn (µ1,2(t))

(

µ2,2(t)

µ1,1(t)
− µ1,1(t)(1 + γ2

t )

)1/2

dt = c ,

with c a real constant and with a an arbitrary, fixed element of the parameter space. Thus,
in this case, the penalized log-likelihood takes the form

l∗(β) = l(β) +
1

2
log detF (β) , (3.14)

which, as expected, coincides with the result which Firth (1993) proved for flat exponential
families.

3.4 Parameterization invariance for penalized likelihoods

In the previous section we discussed the existence of the penalized likelihood correspond-
ing to the modified scores. Moving a bit further and assuming the existence of a penalized
likelihood, its invariance is not generally guaranteed for one-to-one transformation of the
parameters, as the invariance of the ordinary likelihood is. The reason is that the pur-
pose of the modified scores is bias reduction and bias itself is a parameterization-wise
defined quantity. More formally, consider the case of modifications based on the expected
information. Using index notation, the modified scores for β are

U∗
r = Ur + µs,t (µr,st + µr,s,t) /2 . (3.15)

Consider an injective and smooth re-parameterization γ = φ(β) and consider the modified
scores on γ

Ū∗
r = Ūr + µ̄s,t (µ̄r,st + µ̄r,s,t) /2 ,

with all the barred quantities referring to γ parameterization. Also, let βr
s = ∂βr/∂γs,

βr
st = ∂2βr/∂γs∂γt and γr

s = ∂γr/∂βs. By these definitions βr
sγ

s
t = δr

t , with δr
t the

Kronecker delta function with value 1 for r = t and 0 else.
By Section A.3 in Appendix A, the ordinary score functions Ur transform as covariant

tensors since Ūr = βs
rUs. Also, by Example A.3.1 in Appendix A, the Fisher information

transforms as a covariant tensor and its matrix-inverse as a contravariant one. So, µ̄r,s =
βt

rβ
u
s µt,u for the Fisher information and µ̄r,s = γr

t γ
s
uµ

t,u for its matrix-inverse. Directly by
their definition, for the joint null moments µr,s,t and µr,st we have that

µ̄r,s,t = βu
r β

v
sβ

w
t µu,v,w

and
µ̄r,st = βu

r β
v
sβ

w
t µu,vw + βu

r β
v
stµu,v ,

and so µr,s,t transforms as a covariant tensor and µr,st is not a tensor on account of the
presence of the second derivatives with respect to γ in the above formulae. Substituting
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in (3.15) we have

Ū∗
r = βr1

r Ur1 +
1

2
γs

s1
γt

t1µ
s1,t1

(

βr2
r β

s2
s β

t2
t µr2,s2t2 + βr2

r β
s2
st µr2,s2 + βr2

r β
s2
s β

t2
t µr2,s2,t2

)

= βr1
r Ur1 +

1

2
βr1

r µ
s1,t1 (µr1,s1t1 + µr1,s1,t1) +

1

2
γs

s1
γt

t1β
r2
r β

s2
st µ

s1,t1µr2,s2

= βr1
r U

∗
r1

+
1

2
γs

s1
γt

t1β
r2
r β

s2
st µ

s1,t1µr2,s2 ,

and thus U∗
r does not transform as a tensor because the second summand of the last

expression depends on βr
st. Hence, the value of the corresponding penalized log-likelihood

l∗(β) is not generally parameterization invariant because l̄∗(γ) = l̄∗(φ(β)) 6= l∗(φ−1(γ)) =
l∗(β). However notice that for affine transformations γr = ar + ar

sβ
s, with ar and ar

s some
constants, we have that βr

st = 0 and so Ū∗
r = βr1

r U
∗
r1

. Thus l̄∗(γ) = l∗(φ−1(γ)) = l∗(β)
and the penalized log-likelihood is invariant under affine transformations. This is a direct
consequence of the tensorial properties of the bias of an estimator under the group of
linear parameter transformations. Given that Rrs and R̄r are tensors, the above discussion
extends for penalized likelihoods corresponding to the more general family of modifications
defined in (3.7).

One might argue that from a philosophical point of view, the corresponding penalized
log-likelihoods are not appropriate for statistical inference, because a change in parame-
terization might alter the inferences made. However, for statistical applications and after
the choice of a specific parameterization has been made, the modified score functions can
be used to obtain first-order unbiased counterparts to the ML estimator and in several sit-
uations, as we will see in later chapters, estimators that are superior to the ML estimator
in various other ways.

3.5 Consistency and asymptotic normality of the bias-reduced estimator

The consistency and the asymptotic normality of the BR estimator are direct consequences
of the general results in Section 6.3 and in Section 6.5 by using any bias-reducing mod-
ification in their derivations. If β̃ is the BR estimator for exponential family non-linear
models with known dispersion and β0 is the true but unknown value of the parameter
vector, then under the regularity conditions of Subsection 2.3.1, β̃−β0 = op(1) and specif-
ically (β̃ − β0) has asymptotically a p-dimensional normal distribution with zero mean
and variance-covariance matrix the inverse of the Fisher information. The proof for the
consistency of β̃ as given in Section 6.3 depends on the consistency of the ML estimator
and, in turn, the consistency of the ML estimator relies heavily on the assumption of it
taking always finite values in a compact subset of the parameter space B. However, there
might be cases of exponential family models, like logistic regression, where this assumption
is not generally valid. In these cases, we could treat β̃ as a “Z-estimator” and possibly
proceed according to the consistency proofs in van der Vaart (1998, § 5.2).
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3.6 Modified scores for exponential family non-linear models: Multi-

variate Responses

3.6.1 Multivariate response generalized non-linear models

3.6.1.1 General links

We consider the usual setting of Chapter 2, that is realizations y1, y2, . . . , yn of independent
q-dimensional random vectors Y1, Y2, . . . , Yn from an exponential family of distributions.
Also, for their expectations, consider an exponential family non-linear model with known
dispersion in its most general form (2.5). Then, the sum of the cumulant matrices Pt and
Qt is given by

Pt +Qt =
∑

r

q
∑

s=1

ZT
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)Zrzrst

+
∑

r

q
∑

s=1

(Wrs ⊗ 1q)D2 (ηr;β) zrst ,

where Wrs is the s-th row of the q × q matrix Wr = DrΣ
−1
r DT

r as a 1 × q vector and
[DrΣ

−1
r ]s is the s-th row of DrΣ

−1
r as a 1 × q vector.

Hence, the modified scores (3.8) for exponential family non-linear models with known
dispersion are written as

U∗
t = Ut +

1

2

∑

r

q
∑

s=1

trace
{

HrW
−1
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)

}

p
∑

u=1

etuzrsu (3.16)

+
1

2

∑

r

q
∑

s=1

trace
{

F−1(Wrs ⊗ 1q)D2 (ηr;β)
}

p
∑

u=1

etuzrsu (t = 1, . . . , p) ,

with Hr = ZrF
−1ZT

r Wr (see Subsection 2.4.3 for a description of Hr) and etu as in (3.8).
For analytic derivations of the above results see Section B.2 in Appendix B.

The usefulness of expression (3.16) lies in the fact that it involves quantities which are
easily obtained once a specific exponential family non-linear model is selected and which
usually are readily available in the output of standard computing packages. The modified
scores could be expressed in terms of the derivatives of the logarithm of Jeffreys invariant
prior, following (3.10). However, while this would reveal the dependence on Jeffreys prior,
it would involve more complicated terms than (3.16).

3.6.1.2 Canonical Links

In the case of canonically linked models (2.7), Dr = λ−1
r Σr and so Wr = λ2

rΣr. Further,
by (2.4)

([DrΣ
−1
r ]s ⊗ 1q)D2 (µr; ηr) = λ−1

r D2 (µrs; ηr) = λ−3
r Krs ,

where Krs denotes the s-th block of rows of Kr, s = 1, . . . , q, with Kr the blocked q2 × q
matrix of third-order cumulants of the random vector Yr. Thus, the expression (3.16) is
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considerably simplified and the modified scores take the form

U∗
t = Ut +

1

2

∑

r

q
∑

s=1

λ−1
r trace

{

HrΣ
−1
r Krs

}

p
∑

u=1

etuzrsu (3.17)

+
1

2

∑

r

q
∑

s=1

λ−2
r trace

{

F−1(Σrs ⊗ 1p)D2 (ηr;β)
}

p
∑

u=1

etuzrsu (t = 1, . . . , p) .

3.6.2 Multivariate-response generalized linear models

3.6.2.1 General links

Generalized linear models have the form (2.5), with ηr(β) = Z(xr), where the q×p design
matrix Z(xr) (r = 1, . . . , n) is a function of the covariate vector xr and does not depend
on β. Thus, in (3.16), D2 (ηr;β) = 0 and the modified scores reduce to

U∗
t = Ut +

1

2

∑

r

q
∑

s=1

trace
{

HrW
−1
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)

}

p
∑

u=1

etuzrsu , (3.18)

for t = 1, . . . , p. Again, all the quantities, except Zr ≡ Zr(x), in (3.18) are functions of β.

3.6.2.2 Canonical Links

By the same arguments as in the derivation of (3.17), for canonical link functions the
modified scores have the form

U∗
t = Ut +

1

2

∑

r

q
∑

s=1

λ−1
r trace

{

HrΣ
−1
r Krs

}

p
∑

u=1

etuzrsu (t = 1, . . . , p) . (3.19)

3.7 Modified scores for exponential family non-linear models: Univari-

ate Responses

3.7.1 Univariate-response generalized non-linear models

3.7.1.1 General links

Suppose now that the response variable is scalar. All of the above applies, just by dropping
the dimension of the response to q = 1. For notational simplicity, in the univariate case,
write κ2,r = Var(Yr) and κ3,r = Cum3(Yr) for the variance and the third cumulant of Yr,
respectively. The modified scores for an exponential family non-linear model with known
dispersion are written in the form

U∗
t = Ut +

1

2

∑

r

hr
d′r
dr

p
∑

s=1

etszrs (3.20)

+
1

2

∑

r

wr trace
{

F−1D2 (ηr;β)
}

p
∑

s=1

etszrs (t = 1, . . . , p) .
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In (3.20), zrs = ∂ηr/∂βs, dr = ∂µr/∂ηr, d
′
r = ∂2µr/∂η

2
r , wr = d2

r/κ2,r and D2 (ηr;β) is the
p× p Hessian matrix of ηr with respect to β. The quantity hr is the r-th diagonal element
of the projection matrix

H = ZF−1ZTW ,

where, if η = (η1, . . . , ηn)T , Z is the n × p Jacobian of η with respect to β and W =
diag{wr; r = 1, 2, . . . , n}.

3.7.1.2 Canonical links

For canonical link functions in the non-linear case, we have dr = λ−1
r κ2,r and d′r = λ−2

r κ3,r.
Thus

U∗
t = Ut +

1

2

∑

r

λ−1
r hr

κ3,r

κ2,r

p
∑

s=1

etszrs (3.21)

+
1

2

∑

r

λ−2
r κ2,r trace

{

F−1D2 (ηr;β)
}

p
∑

s=1

etszrs (t = 1, . . . , p) ,

3.7.2 Univariate-response generalized linear models

3.7.2.1 General links

For univariate GLMs, the third summand in the expression (3.20) disappears and zrs = xrs

does not depend on β, leaving us with the following form for the modified scores for general
link functions

U∗
t = Ut +

1

2

∑

r

hr
d′r
dr

p
∑

s=1

etsxrs (t = 1, . . . , p) . (3.22)

Note that the term d′r/dr depends solely on the inverse of the link function.

3.7.2.2 Canonical links

Canonically-linked GLMs are flat exponential families and further simplification is possible
since the Fisher and the observed information coincide. Hence, in this case,

U∗
t = Ut +

1

2

∑

r

λ−1
r hr

κ3,r

κ2,r

p
∑

s=1

etsxrs (t = 1, . . . , p) , (3.23)

where ets simplifies to the (t, s)-th element of 1p +RF−1 for ets ≡ e
(O)
ts = e

(E)
ts . Further, if

R is a matrix of zeros we have that

U∗
t = Ut +

1

2

∑

r

λ−1
r hr

κ3,r

κ2,r
xrt , (3.24)

which is the same elegant result given in Firth (1992a,b).
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3.7.3 Relation to Cordeiro & McCullagh (1991) and pseudo-responses

In the case of univariate GLMs, the above expressions are directly connected to the results
in Cordeiro & McCullagh (1991) (see also McCullagh & Nelder, 1989, § 15.2). For (3.22)
we have that

U∗
t = Ut +

1

2

∑

r

hr
d′r
dr

p
∑

s=1

etsxrs (3.25)

= Ut −
∑

r

hr
ξr
Srr

p
∑

s=1

etsxrs (t = 1, . . . , p) ,

with

ξr = −1

2

d′r
dr
Srr ,

as defined in Cordeiro & McCullagh (1991), and Srr the r-th diagonal element of S =
X(XTWX)−1XT . The n × n matrix S is the asymptotic variance-covariance matrix of
the ML estimator of η = (η1, . . . , ηn)T . Noting that hr = Srrwr, (3.25) is written as

U∗
t = Ut −

∑

r

wrξr

p
∑

s=1

etsxrs (t = 1, . . . , p) ,

so that the vector of modified scores is given by

U∗ = U −X∗TWξ ,

where X∗ is the n × p matrix with (r, t)-th component x∗rt =
∑p

s=1 etsxrs. Letting
D = diag{dr; r = 1, . . . , n}, the ordinary scores in this case have the usual form U =
XTWD−1(y − µ), with y = (y1, . . . , yn)T and µ = (µ1, . . . , µn)T . So, the vector of modi-
fied scores can be written in the form

U∗ = XTWD−1(y − µ) −X∗TWξ ,

This re-expression is a direct consequence of the initial definition of the modifications (see
(3.1) and (3.2)) and the fact that, as is shown in Cordeiro & McCullagh (1991), the vector
of the first-order biases of the ML estimator (see (3.6) for its expression in terms of A(E))
can be written as

n−1b1 = (XTWX)−1XTWξ ,

which is, also, the basis for the supplementary re-weighted least squares approach to bias
correction therein.

Moving a bit further, in the case of modifications based on the expected information
where ets = 1 if t = s and 0 else, we have that X∗ = X. Thus,

U∗ = XTWD−1(y −Dξ − µ) ,
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which has components

U∗
t =

∑

r

dr

κ2,r
(yr − drξr − µr) xrt (3.26)

=
∑

r

dr

κ2,r

(

yr +
1

2
hr
d′r
wr

− µr

)

xrt (t = 1, . . . , p) .

This latter expression reveals an important feature of the modified scores in this set-
ting that will be used extensively in later chapters. If hrd

′
r/(2wr) or equivalently −drξr

(r = 1, . . . , n) were known constants then the bias-reduction method would be formally
equivalent to maximum likelihood when the pseudo-responses

y∗r = yr +
1

2
hr
d′r
wr

(r = 1, . . . , n) ,

(or equivalently y∗r = yr − drξr) are used instead of yr. In this way the implementation of
fitting procedures for obtaining the BR estimates is greatly facilitated, since we can just
replace yr by y∗r in the IWLS step. Note that generally hrd

′
r/wr depends on the parameters

and so the value of y∗r will be updated according to the current estimates at each step of
the cycle. For canonical link functions, dr = λ−1

r κ2,r, wr = λ−2
r κ2,r and d′r = λ−2

r κ3,r and
so the pseudo-responses reduce to

y∗r = yr +
1

2
hr
κ3,r

κ2,r
(r = 1, . . . , n) ,

as is, also, directly apparent by (3.24). In Table 3.2 we derive the form of the pseudo-
responses for some commonly used GLMs. The modified IWLS step can more conveniently
be described in terms of modified working observations: replacing yr with y∗r in (2.15) we
have

ζ∗r = ηr +
y∗r − µr

dr
(3.27)

= ηr +
yr − µr

dr
− ξr = ζr − ξr .

Thus, if we modify the working observation ζr by adding −ξr = hrd
′
r/(2drwr) to it, the

iteration of the usual IWLS scheme returns the BR estimates.
An issue that could arise when using the pseudo-responses in already implemented

fitting software relates to the sign of hrd
′
r/wr. If the response has a restricted range,

which is the most usual case (for example, positive real for gamma and inverse Gaussian
and non-negative integer for binomial and Poisson responses), the pseudo-responses could
violate the restriction. Since hr ∈ [0, 1] and the working weight wr is necessarily non-
negative as the ratio of a square over a variance, the sign of hrd

′
r/wr is the sign of d′r and

thus it directly depends on the link function. Many implementations of fitting procedures
— correctly — refuse to proceed under violations of the response range. For example,
in order to fit a binomial-response GLM through the glm procedure in R language (R
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Development Core Team, 2007) the response must be in [0, 1] and outside this range
an error message is returned. So, special care is needed when using the pseudo-responses
within readily available procedures. In special cases this could be dealt by simple algebraic
manipulation of the pseudo-data representation. For example, as is done in Chapter 5, for
binomial response models we can ‘trade’ quantities between the pseudo-responses and the
binomial totals so that the positivity of both is ensured. However this raises other issues,
that are discussed in Chapter 5.

These elegant results do not extend in any obvious way in the case of multivariate
responses, on account of the fact that W is no longer diagonal but is block diagonal and
because the vector of first-order biases can be expressed, at best, as a function of traces of
products of matrices with no other apparent simplification. Also, for univariate generalized
non-linear models, expressions of this elegance cannot in general be obtained because of
the existence of the third term in the right hand side of (3.20). This term corresponds to
the extra term in the expression for the first-order bias that incorporates the non-linearity
of the predictor.

3.7.4 Existence of penalized likelihoods for univariate GLMs

In the case of general exponential families, we have derived a general necessary and suf-
ficient condition for the existence of a penalized likelihood corresponding to the modified
scores based on the expected information (see Subsection 3.2.3). The derivation was based
on the re-expression of the modified scores as ordinary scores plus derivative of the loga-
rithm of Jeffreys prior plus an extra term. This extra term is zero for canonical families
and so the modified scores correspond to penalization of the likelihood by Jeffreys prior.

Here we present a more specialized but not less important result which asserts that
within the class of univariate GLMs, a penalized likelihood corresponding to the modified
scores based on the expected information exists if and only if the canonical link is used.

Theorem 3.7.1: Within the class of univariate generalized linear models, a penalized
likelihood corresponding to the modified scores based on the expected information exists
if and only if the link is canonical.

Proof. Noting that d′r/drxrt = ∂log dr/∂βt and by (3.22), the modified scores based on
the expected information can be written as

U∗
t = Ut +

1

2
trace{HEt} (t = 1, . . . , p) , (3.28)

where Et = diag{∂log dr/∂βt; r = 1, . . . , n}.
The vector of modified scores corresponds to a pseudo-likelihood expression if and only

if
∂U∗

s (β)

∂βt
=
∂U∗

t (β)

∂βs
,

for every s, t ∈ {1, 2, . . . , p}, which by (3.28) reduces to the condition

∂

∂βt
trace{HEs} =

∂

∂βs
trace{HEt} .
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So, a necessary and sufficient condition for U∗
t (t = 1, . . . , p) to be integrable over the

parameter space is that ∂trace{HEt}/∂βs is invariant under interchanges of the subscripts
s and t. We have

∂

∂βs
trace{HEt} = trace

{(

∂

∂βs
H

)

Et

}

+ trace

{

H

(

∂

∂βs
Et

)}

.

Note that ∂Et/∂βs = diag{∂2 log dr/∂βs∂βt; r = 1, . . . , n}. Hence the second term in the
above expression is invariant under interchanges of s and t. Thus, the condition reduces
to involve only the first term. Now,

∂

∂βs
H =

∂

∂βs

(

X(XTWX)−1XTW
)

(3.29)

= −X(XTWX)−1XTWsX(XTWX)−1XTW +X(XTWX)−1XTWs ,

where Ws = diag{∂wr/∂βs; r = 1, . . . , n}. But

∂

∂βs
wr =

∂

∂βs

d2
r

κ2,r

= 2
dr

κ2,r

∂

∂βs
dr −

d2
r

κ2
2,r

∂

∂βs
κ2,r

= wr(2
∂

∂βs
log dr −

∂

∂βs
log κ2,r) ,

so that Ws = W (2Es −Λs), where Λs = diag{∂log κ2,r/∂βs; r = 1, . . . , n}. Substituting in
(3.29) we have

∂

∂βs
H = −X(XTWX)−1XTW (2Es − Λs)X(XTWX)−1XTW

+X(XTWX)−1XTW (2Es − Λs)

= H(2Es − Λs)(1n −H) ,

where 1n is the n× n identity matrix. Thus,

trace

{(

∂

∂βs
H

)

Et

}

= trace {H(2Es − Λs)(1n −H)Et} (3.30)

=2 trace{HEsEt} − 2 trace{HEsHEt} − trace{HΛsEt} + trace{HΛsHEt} .

Note that the first two terms of the latter expression are invariant under interchanges
of s and t, because Et is diagonal and because of the properties of the trace function.
For the remaining terms note that ∂log dr/∂βt = xrt∂log dr/∂ηr, so that Et = ẼX̃t, with
Ẽ = diag{∂log dr/∂ηr; r = 1, . . . , n} and X̃t = diag{xrt; r = 1, . . . , n}. By the same
argument Λs = Λ̃X̃s, with obvious notational correspondences. So, for the third term of
(3.30) we have

trace{HΛsEt} = trace{HΛ̃X̃sẼX̃t} = trace{HΛ̃X̃tẼX̃s} .
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The last equality is satisfied because Λ̃, X̃s, Ẽ are by definition diagonal and so matrix
multiplication is commutative for them. So, the condition is reduced to the invariance of
trace{HΛsHEt}. The projection matrix H can be written as H = SW , where S is as
defined in the previous section. Thus, using diagonality and the properties of trace we
have

trace{HΛsHEt} = trace{SW Λ̃X̃sSWẼX̃t} = trace{X̃tSX̃sW Λ̃SẼW} . (3.31)

Changing the position of s and t we have

trace{HΛtHEs} = trace{SW Λ̃X̃tSWẼX̃s} = trace{X̃tSX̃sWẼSΛ̃W} . (3.32)

Hence (3.31) and (3.32) are equal if and only if Λ̃SẼ is symmetric or alternatively, by the
symmetry of S, if and only if

∂

∂ηr
log dr = cr

∂

∂ηr
log κ2,r (r = 1, . . . , n) ,

with {cr} a sequence of real constants. This equality is valid if and only if the link function
is the canonical one, since then and only then dr = λ−1

r κ2,r. This completes the proof.

3.8 General remarks

We have derived explicit, general formulae for the modified scores that produce first-order
unbiased estimators, starting from the wide class of multivariate-response exponential
family non-linear models and narrowing down to the simple case of canonically-linked
GLMs. It should be noted that further simplification of the formulae is possible for other
special cases, for example generalized bilinear models, by exploiting the specific structure
of the various quantities involved.

Statistical properties of the penalized-likelihood estimator, on the other hand, must
be examined case by case. For example, Heinze & Schemper (2002) illustrated that in
binomial logistic regression, ordinary ML can beneficially be replaced by the penalized
version because of the clear shrinkage interpretation, ensuring at the same time finiteness
of the BR estimates even in separated cases where the ML estimate is infinite-valued. In
contrast, in some other situations the reduction of bias in this way may not be beneficial.
An example is the estimation of the mean of a normal population with known coefficient
of variation, where reduction in bias is accompanied by inflation of variance (Firth, 1993).

Further, we note that the ML and the BR estimator agree in their first-order asymp-
totic variance-covariance matrix in regular problems, this being the inverse of the Fisher
information.

Finally, the only restriction we imposed in the general family of modifications (3.7)
was that R̄r = 0. This enabled the derivation of generic formulae for the modified scores
for the whole class of exponential family non-linear models, maintaining at the same time
a certain level of elegance in the expressions.

In later chapters, while we give the general form of modifications (with R̄r = 0), we fo-
cus only on modifications based on the expected information. This is done because i) they
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have the simplest form in contrast to the other members of the family and ii) as already
seen for the case of univariate GLMs, they allow the most elegant theoretical derivations
and enable the ready implementation of fitting procedures in practice. More complicated
modifications can be obtained using modifications based either on the score function or
the observed information and/or controlling both Rrs and R̄r under the restriction of
having expectations of order at most O(n1/2) and O(n−1/2), respectively. However, all
modifications are asymptotically equivalent and as already discussed, in terms of bias they
all result in first-order unbiased estimators. The choice among them should be applica-
tion dependent and possibly be made towards further improvement of other asymptotic
properties of the resultant estimators. This is the subject of further work and will not be
pursued in the current thesis.
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Table 3.1: Characteristics of commonly used exponential families with known dispersion.

Normal Binomial Poisson Gamma Inverse Gaussian

Range of y (−∞,+∞) 0, 1, . . . , m 0, 1, . . . [0,+∞) (0, +∞)

Parameters µ ∈ ℜ, σ2 > 0 π ∈ (0, 1), m = 1, 2, . . . µ > 0 µ > 0, ν > 0 λ > 0, µ > 0

Density or pmf
1√
2πσ

exp



(y − µ)2

2σ2

ff

“m

y

”

πy(1 − π)m−y exp {−µ}µy

y!

“

ν
µ

”ν
yν−1 exp

n

− ν
µ

y
o

Γ(ν)

1
p

2πλy3
exp



− (y − µ)2

2λµ2y

ff

λ σ2 1 1 1/ν λ

b(θ) θ2/2 m log(1 + eθ) exp(θ) − log(−θ) −(−2θ)1/2

µ = µ∗(θ) = E(Y ; θ) µ meθ/(1 + eθ) exp(θ) −1/θ (−2θ)−1/2

κ2 = Var(Y ) σ2 mπ(1 − π) µ µ2/ν λµ3

κ3 = Cum(Y ) 0 mπ(1 − π)(1 − 2π) µ 2µ3/ν2 3λ2µ5

θ = θ∗(µ) µ log(π/(1 − π)) log µ −1/µ −1/(2µ2)
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Table 3.2: Derivation of pseudo-responses for several commonly used GLMs (see Section 3.7).

Distribution
Link function Inverse link function

d = ∂µ/∂η d′ = ∂2µ/∂η2
Quadratic weight Pseudo-responses

η = g(µ) µ = h(η) w = d2/κ2 y∗ = y + hd′/(2w)
(canonical link: *)

Normal (µ, σ2) η = µ * µ = η 1 0 1/σ2 y∗ = y

Binomial (m, π)

η = log
π

1 − π
* π =

eη

1 + eη
mπ(1 − π) mπ(1 − π)(1 − 2π) mπ(1 − π) y∗ = y + h(1/2 − π)

η = Φ−1(π) π = Φ(η) mφ(η) −mηφ(η) m
(φ(η))2

π(1 − π)
y∗ = y − hπ(1 − π)

η

2φ(η)

η = log(− log(1 − π)) π = 1 − e−eη

m(1 − π)eη m(1 − π)eη(1 − eη) m
e2η(1 − π)

π
y∗ = y + hπ

(1 − eη)

2eη

η = − log(− log(π)) π = e−e−η

mπe−η mπe−η(e−η − 1) m
e−2ηπ

1 − π
y∗ = y + h(1 − π)

e−η − 1

2e−η

Poisson (µ) η = log µ * µ = eη µ µ µ y∗ = y +
h

2

η = − 1

µ
* µ = − 1

η
µ2 2µ3 νµ2 y∗ = y + h

µ

ν

Gamma (µ, ν) η = log µ µ = eη µ µ ν y∗ = y + h
µ

2ν

η = µ µ = η 1 0
ν

µ2
y∗ = y

Inverse Gaussian
(λ, µ)

η = − 1

2µ2
* µ = (−2η)−1/2 µ3 3µ5 µ3

λ
y∗ = y + h

3λµ2

2
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Chapter 4

Bias reduction and logistic

regression

4.1 Introduction

Bias correction in logistic regression has attracted the attention of many authors, for exam-
ple Anderson & Richardson (1979), Schaefer (1983), Copas (1988), Cordeiro & McCullagh
(1991) and other references therein.

Recently, Heinze & Schemper (2002) and Zorn (2005) investigated the bias-reduction
method, described in the previous chapter, for estimation in binomial-response logistic
regression. By extensive empirical studies, they illustrated the superior properties of the
resultant estimator relative to the maximum likelihood (ML) estimator. Specifically, they
emphasized the finiteness of the bias-reduced (BR) estimates even in cases of complete
or quasi-complete separation (see Albert & Anderson, 1984, for definitions) and their
shrinkage properties. Corresponding empirical studies in Bull et al. (2002) extended these
remarks to the case of multinomial-response logistic regression. They compared the bias-
reduction method with other bias correction methods and accorded it a preferred position
amongst them, again in terms of the properties of the resultant estimator. However, Bull
et al. (2002) do not give any generalization for the elegant form of the modified scores in
the binomial case. Instead, due to the involvement of the multinomial variance-covariance
matrix in the calculations, they keep a pessimistic attitude towards this direction and they
proceed to the empirical studies keeping the unnecessary, for logistic regressions, redun-
dancy in the expressions from the general definition of the bias-reducing modifications.

In this chapter we proceed to a systematic, theoretical treatment of the bias-reduction
method for logistic regression by filling the theoretical gaps in the aforementioned work.
The chapter is organized in two parts.

The first part deals with binomial-response logistic regression. We briefly review the
work in Firth (1992a,b) giving explicit expressions for the modified scores and the iterative
re-weighted least squares (IWLS) variant for obtaining the BR estimates. The core of
this part consists of new material presenting the theorems and corresponding proofs that
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formally attribute to the BR estimator the properties that have been conjectured by the
results of the empirical studies in Heinze & Schemper (2002) and Zorn (2005). In this way
we round off any previous work for such models by formally concluding that the maximum
penalized likelihood is an improvement to the traditional ML approach.

The second part deals with the extension of the results to the multinomial case. More
specifically, the simple and elegant form of the modified score equations is derived and
discussed, focusing mainly on the way that the results in Firth (1992a,b) generalize in
the multinomial setting. It is also shown how the corresponding Poisson log-linear model
can be used to derive the BR estimator. An iterative generalized least squares (IGLS)
algorithm for the BR estimates is proposed and we illustrate how it proceeds by applying
appropriate ‘flattening’ modifications to the response at each IGLS iteration.

4.2 Binomial-response logistic regression

4.2.1 Modified score functions

Consider realizations y1, y2, . . . , yn of n independent binomial random variables Y1, Y2,
. . ., Yn with probabilities of success π1, π2, . . . , πn and binomial totals m1,m2, . . . ,mn,
respectively. Furthermore, consider a logistic regression model of the form

log
πr

1 − πr
= ηr =

p
∑

t=1

βtxrt (r = 1, . . . , n) , (4.1)

where β = (β1, . . . , βp)
T is a p-dimensional parameter vector and xrt is the (r, t)-th element

of a n × p design matrix X, assumed to be of full rank; if an intercept parameter is to
be included in the model we can just set the first column of X to be a column of ones.
This is a generalized linear model (GLM) with canonical link, and by a substitution of
κ2,r = πr(1 − πr) and κ3,r = πr(1 − πr)(1 − 2πr) in (3.23), the modified scores for the
parameters β are given by the expression

U∗
t = Ut +

1

2

n
∑

r

hr(1 − 2πr)

p
∑

s=1

etsxrs (t = 1, . . . , p) , (4.2)

where Ut =
∑

r(yr −mrπr)xrt are the ordinary score functions. In this case e
(E)
ts = e

(O)
ts =

[1p +RF−1]ts in (3.8), and if we set R = 0 we get the elegant form of the modifications in
Firth (1992a,b),

U∗
t =

∑

r

(yr −mrπr)xrt +
1

2

∑

r

hr(1 − 2πr)xrt (4.3)

=
∑

r

(

yr +
1

2
hr − (mr + hr)πr

)

xrt (t = 1, . . . , p) .

As already mentioned in Subsection 3.2.2, for flat exponential families, the solution of
the modified scores equation based on the expected information locates a stationary point
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of the penalized log-likelihood

l∗(β) = l(β) +
1

2
log detF (β) ,

with F = XTWX the Fisher information on β, and W = diag{mrπr(1−πr); r = 1, . . . , n}.
An alternative bias-reducing expression for the modified scores is obtained for etu =

e
(S)
tu . To illustrate the extra complexity of the alternative formulae, for R = 0 and for

every t = 1, . . . , p we have

U
(S)
t =

∑

r

(yr −mrπr)xrt +
∑

r

hr(1/2 − πr)

p
∑

s=1

[

XT (y − µ)(y − µ)TX(XTWX)−1
]

ts
xrs

=
∑

r

(yr −mrπr)xrt +
∑

r

hr(1/2 − πr)
[

X(XTWX)−1XT (y − µ)(y − µ)TX
]

rt

=
∑

r

(yr −mrπr)xrt +
∑

r

hr(1/2 − πr)

n
∑

s,u=1

hrs
(ys − µs)(yu − µu)

msπs(1 − πs)
xut ,

with hrs the (r, s)-th element of H. Apparently the above expression is unwieldy compared
to (4.3) mainly because it involves all the elements of the projection matrix H. Given

that both expressions result in first-order unbiased estimators and that U
(S)
t does not

correspond to a penalized log-likelihood in closed form as U∗
t does, we emphasize in what

follows the case of modifications based on the expected information. As a final comment

on the form of U
(S)
t , note that by taking the expectation of the second summand of the

right hand side above, expression (4.3) is recovered.

4.2.2 IWLS procedure for obtaining the bias-reduced estimates

As in Firth (1992a,b), if we treat hr (r = 1, . . . , n) in (4.3) as if they were known constants,
then the BR estimator is formally equivalent to the use of ML after making the following
adjustments to the response frequencies and totals:

Pseudo-successes y∗r = yr +
1

2
hr

Pseudo-totals m∗
r = mr + hr

(r = 1, . . . , n) . (4.4)

The above pseudo-data representation can be viewed as a generalization of the flattening
modifications used in Clogg et al. (1991) for the re-calibration of the industry and occu-
pation codes on 1970 census public-use samples to the 1980 standard. In our context, the
Clogg et al. (1991) proposal is to use

Pseudo-successes y∗r = yr + a
p

∑

imi

Pseudo-totals m∗
r = mr +

p
∑

imi

(r = 1, . . . , n) , (4.5)

where a ∈ (0, 1). Therein a was chosen as the observed proportion of successes, namely
a =

∑

r yr/
∑

r mr. The stated aim in Clogg et al. (1991) was not bias reduction but
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rather an applicable way of eliminating the possibility of infinite ML estimates in the large
application they considered. They made this choice of flattening modification based on
standard Bayesian arguments which relate to the behaviour of Jeffreys prior among every
possible logistic regression model and design. More specifically, this choice yields to the
same average prior variance for any design and model when the prior is in the conjugate
form (see also the last section in Rubin & Schenker, 1987, for a thorough discussion).
However, in the same year, Cordeiro & McCullagh (1991) showed that the vector of first-
order biases of the estimators of the parameters β in a logistic regression model can be
approximated by pβ/

∑

r mr. In this way Cordeiro & McCullagh (1991) attribute to the
vector of first-order biases approximate collinearity with the parameter vector. In terms of
this approximation, Clogg et al. (1991) append to the responses an appropriate fraction a of
the first-order relative bias. In the case of (4.4) we append to the responses half a leverage.
If we depart from the aggregated case we considered, and consider that the responses are
just “1”-“0” Bernoulli trials, then mr = 1 for every r = 1, . . . , n and

∑

r mr = n. In
this way the balanced choice hr = p/n makes both pseudo-data representations equivalent
for a = 1/2. In this sense the bias-reducing pseudo-data representation is more general
than (4.5). As will be shown shortly, (4.4) is equally easy to apply in practice and by
the point of origin of its derivation has the advantage a clearer interpretation in terms of
second-order asymptotics.

However, the pseudo-data representation (4.4) has the disadvantage of incorrectly in-
flating the binomial totals and for this reason could lead to underestimation of the asymp-
totic standard errors, if care is not taken. On the other hand such a pseudo-data rep-
resentation ensures positive pseudo-responses y∗r . In order not to have to re-adjust to
the correct binomial totals once the bias-reduced estimates have been obtained, we could
define the alternative pseudo-data representation

y∗r = yr +
1

2
hr − hrπr , (4.6)

(derived also in Table 3.2) which however does not necessarily respect the non-negativity of
the binomial responses. The choice of a pseudo-data representation to be used in practice
is merely a matter of whether already implemented software is used for obtaining the BR
estimates. So, for example, as in the discussion at the end of Chapter 3, if we intend to
use the glm procedure in the R language (R Development Core Team, 2007), we should
use the first representation, since glm —correctly— will return an error message if the
pseudo-responses become negative. However in this case, after the final iteration we have
to re-adjust each working weight wr by dividing it by mr + hr, with hr evaluated at the
estimates, and multiplying it by mr. In this way we recover the correct estimated standard
errors (see Chapter 5, for more details).

Both pseudo-data representations in (4.4) and (4.6) can be used to derive a modified
IWLS procedure (see Section 3.8 for a general description) for the bias-reduced estimates.
If the estimates at the c-th iteration have value β(c), then an updated value can be obtained
via the modified Fisher scoring iteration

β(c+1) = β(c) +
(

XTW(c)X
)−1

U∗
(c) .
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or, in terms of modified IWLS iteration,

β(c+1) = (XTW(c)X)−1XTW(c)ζ
∗
(c) . (4.7)

From (3.27), ζ∗ is the n-vector of the modified working variates with elements

ζ∗r = log
πr

1 − πr
+
yr/mr − πr

πr(1 − πr)
+
hr(1/2 − πr)

mrπr(1 − πr)

= ζr − ξr (r = 1, . . . , n) ,

where ξr = hr(πr−1/2)/{mrπr(1−πr)} and ζr are the working variates for maximum like-
lihood IWLS. Again, since both hr and πr generally depend on the parameters, the value
of the modified frequencies y∗r is updated with the estimates at each cycle of this scheme.
Thus, the replacement of the responses yr with y∗r results in the additive adjustment of ζr
by −ξr.

As starting values for the above scheme we can use the ML estimates of β after adding
1/2 to the initial frequencies. By this simple device we eliminate the possibility of infinite
ML estimates.

4.2.3 Properties of the bias-reduced estimator

Data separation in logistic regression has been extensively studied in Albert & Anderson
(1984) and Lesaffre & Albert (1989) (see also Section B.4 in Appendix B for some of the
results therein expressed in our notation). With separated datasets, the ML estimate has
at least one infinite-valued component, which usually implies that some fitted probabilities
are exactly zero or one and causes fitting procedures to fail to converge. Recently, Heinze &
Schemper (2002) illustrated, with two extensive empirical studies, that the bias-reduction
method provides a solution to the problem of separation in binary logistic regression, and
they conjectured that it guarantees that the BR estimates are finite for general regressions.
Further, they note that the BR estimates are typically smaller in absolute value than
the corresponding ML estimates. This is natural, since the asymptotic bias in this case
increases with the distance of the true parameter values from the origin, with the ML
estimator being exactly unbiased when all of the true log-odds are zero (see, for example,
Copas, 1988). Also, Zorn (2005) gives an excellent review and examples on separation in
binomial-response logistic regression and focuses on the finiteness of the BR estimates in
such cases. However, no formal theoretical account on the aforementioned properties of
the BR estimator has appeared.

The remainder of this section is devoted to the formal statement and proof of the
finiteness and shrinkage properties of the BR estimator in the case of binomial-response
logistic regression. Specifically, it is shown that the estimates shrink towards zero, with
respect to a metric based on the Fisher information. Further, we comment on the direct
but beneficial impact of shrinkage upon the variance and, consequently, on the mean
squared error (MSE) of the estimator.
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4.2.3.1 A motivating example

Before continuing to the theoretical results, we give an illustration of the finiteness and
shrinkage properties of the BR estimator, by considering the case of a 2×2×2 contingency
table with one binomial response and two cross-classified factors C1 and C2, with two levels
each, as explanatory variables. The response counts are sampled independently at each
combination of the levels of C1 and C2 (covariate settings) from binomial distributions
with totals m1,m2,m3,m4. The model to be fitted is

log
πr

1 − πr
= α+ βxr1 + γxr2 (r = 1, . . . , 4) ,

where xr1 is equal to 1 if C1 = II and 0 otherwise and xr2 is 1 if C2 = B and 0 otherwise;
see Table 4.1.

In this simple case, it is possible to identify every data configuration that causes
separation simply by looking at the likelihood equations

Tα = m1π1 +m2π2 +m3π3 +m4π4 , (4.8)

Tβ = m3π3 +m4π4 ,

Tγ = m2π2 +m4π4 ,

where Tα =
∑4

r=1 yr, Tβ = y3 + y4, Tγ = y2 + y4 are the sufficient statistics for α, β
and γ, respectively, and πr is the probability of success for the r-th covariate setting
(r = 1, 2, 3, 4). Infinite maximum likelihood estimates correspond to fitted probabilities
0 or 1 and so, by (4.8), they occur if and only if at least one of the following conditions
holds:

Tα = 0 or m1 +m2 +m3 +m4 ,

Tβ = 0 or m3 +m4 ,

Tγ = 0 or m2 +m4 ,

Tα − Tβ = 0 or m1 +m2 ,

Tα − Tγ = 0 or m1 +m3 ,

Tβ − Tγ = m3 or −m2 ,

Tα − Tβ − Tγ = m1 or −m4 .

Using the above conditions, Table 4.2 is constructed, in which all the possible separated
data configurations are shown. They are characterized as completely or quasi-completely
separated according to definitions in Albert & Anderson (1984) (Definition B.4.1 and
Definition B.4.2 in Appendix B, here). Also, by the theorems therein (see Theorem B.4.3
in Appendix B) any data configuration that is not recorded in the table is an “overlapping”
configuration and results in unique and finite ML estimates. A data set that has the tenth
configuration of the first row of the quasi-separated part of Table 4.2 was used in Clogg
et al. (1991, Table 6) to illustrate the problematic behaviour of ML for these cases. The
sampling scheme in their example is retrospective (column totals fixed, row totals random)
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Table 4.1: A two-way layout with a binomial response and totals m1, m2, m3, m4 for each combi-
nation of the categories of the cross-classified factors C1 and C2

Covariate
Covariates Response Totals

Setting

C1 C2 Success Failure

1
I

A y1 m1 − y1 m1

2 B y2 m2 − y2 m2

3
II

A y3 m3 − y3 m3

4 B y4 m4 − y4 m4

while we use a prospective sampling scheme (row totals fixed, column totals random).
However, as discussed in McCullagh & Nelder (1989, § 4.3.3) the logistic model applies
with the same β and γ but with different constant α, so that Table 4.2 covers separated
configurations under either sampling scheme.

Here, we consider the severe case with m1 = m2 = m3 = m4 = 2, where 50 (62.5%)
of the 81 possible data configurations are separated. For these cases, the vector of ML
estimates involves infinite components; as in all logistic regressions the bias and the vari-
ance of the ML estimators are infinite. In Table C.1 in Appendix C we present the ML
estimates, the bias-corrected (BC) estimates and the BR estimates for every possible data
set in this setting. The BC estimates (Cordeiro & McCullagh, 1991) are the ML estimates
after subtracting from them the first-order bias terms that are given by (3.3), and so their
value is undefined when the ML estimates are infinite. In contrast, the BR estimator is
finite in all 81 cases. The shrinkage effect from bias reduction is directly noted by com-
paring the finite ML estimates and the BR estimates in Table C.1. Further, note that the
shrinkage of the BC estimates is stronger. This agrees with the empirical results in Heinze
& Schemper (2002) and Bull et al. (2002), where it is illustrated that the BC estimates
correct the bias of the ML estimator beyond the true value and that such overcorrection
is dangerous because is accompanied by small estimated variance.

In Table 4.3 we calculate the expected value, bias and variance of the BR estimator for
several vectors of true parameter values. In the last case of the table the true parameter
vector has the extreme for this setting value (2, 0.4, 2.1), implying probabilities π1 = 0.88,
π2 = 0.98, π3 = 0.92 and π4 = 0.99 at the four covariate settings. Despite the high
probability of separation (0.99), the BR estimates are finite and hence we can explicitly
calculate expectations and variances. However, we have to be cautious with penalized-
likelihood based inferences on data generated for this setting with m = 2. Despite the
fact that the BR estimates exist in contrast to the ML estimates, they have considerable
bias and very small variance so that concerns about the coverage properties of classical
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Table 4.2: All possible separated data configurations for a two-way layout and a binomial response (see Table 4.1). The notions of
quasi-complete and complete separation are defined in Definition B.4.1 and Definition B.4.2 in Appendix B

Separation Type Data configuration (x: positive count, 0: zero count)

Complete

0 x
0 x
0 x
0 x

0 x
x 0
0 x
0 x

0 x
0 x
0 x
x 0

0 x
x 0
0 x
x 0

0 x
0 x
x 0
0 x

0 x
x 0
x 0
x 0

0 x
0 x
x 0
x 0

x 0
0 x
0 x
0 x

x 0
0 x
x 0
0 x

x 0
0 x
x 0
x 0

x 0
x 0
0 x
0 x

x 0
x 0
0 x
x 0

x 0
x 0
x 0
0 x

x 0
x 0
x 0
x 0

Quasi-Complete

0 x
x x
0 x
0 x

0 x
0 x
x 0
x x

0 x
0 x
x x
x 0

0 x
0 x
x x
0 x

0 x
0 x
x x
x x

0 x
0 x
0 x
x x

0 x
x x
0 x
x x

0 x
x x
x 0
x 0

0 x
x x
0 x
x 0

0 x
x x
x x
x 0

x x
0 x
0 x
0 x

0 x
x 0
0 x
x x

0 x
x 0
x x
x 0

x x
0 x
x x
0 x

x x
0 x
x 0
0 x

x x
0 x
x 0
x x

x x
0 x
x 0
x 0

x x
x x
0 x
0 x

x x
x x
x 0
x 0

x x
x 0
0 x
0 x

x x
x 0
0 x
x x

x x
x 0
0 x
x 0

x x
x 0
x x
x 0

x x
x 0
x 0
x 0

x 0
0 x
x x
0 x

x 0
0 x
x 0
x x

x 0
x x
0 x
0 x

x 0
x x
x x
0 x

x 0
x x
x 0
0 x

x 0
x x
x 0
x x

x 0
x x
x 0
x 0

x 0
x 0
0 x
x x

x 0
x 0
x x
0 x

x 0
x 0
x x
x x

x 0
x 0
x x
x 0

x 0
x 0
x 0
x x
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Table 4.3: Expectations, biases and variances for the bias-reduced estimator (α̃, β̃, γ̃) to three decimal places for several different settings
of the true parameter vector (α0, β0, γ0).

(α0, β0, γ0)
Expected

Biases Variances
Probability

values of separation

α0 β0 γ0 E(α̃) E(β̃) E(γ̃) E(α̃ − α0) E(β̃ − β0) E(γ̃ − γ0) Var(α̃) Var(β̃) Var(γ̃)

−0.5 −0.5 −0.5 −0.472 −0.423 −0.423 0.028 0.077 0.077 1.389 1.9 1.9 0.667
−0.5 −0.5 0 −0.474 −0.452 0 0.026 0.048 0 1.432 1.949 1.988 0.58
−0.5 −0.5 0.5 −0.475 −0.471 0.471 0.025 0.029 −0.029 1.459 1.982 1.982 0.526
−0.5 0 −0.5 −0.474 0 −0.452 0.026 0 0.048 1.432 1.988 1.949 0.58
−0.5 0 0 −0.483 0 0 0.017 0 0 1.48 2.009 2.009 0.497
−0.5 0 0.5 −0.486 0 0.486 0.014 0 −0.014 1.499 2.018 1.988 0.464
−0.5 0.5 0 −0.486 0.486 0 0.014 −0.014 0 1.499 1.988 2.018 0.464

0 −0.5 −0.5 −0.004 −0.471 −0.471 −0.004 0.029 0.029 1.47 1.982 1.982 0.526
0 −0.5 0.5 0 −0.486 0.486 0 0.014 −0.014 1.498 1.988 1.988 0.464
0 0 −0.5 0 0 −0.486 0 0 0.014 1.498 2.018 1.988 0.464
0 0 0 0 0 0 0 0 0 1.514 2.018 2.018 0.43
0 0 0.5 0 0 0.486 0 0 −0.014 1.498 2.018 1.988 0.464
0 0.5 −0.5 0 0.486 −0.486 0 −0.014 0.014 1.498 1.988 1.988 0.464
0 0.5 0 0 0.486 0 0 −0.014 0 1.498 1.988 2.018 0.464
0 0.5 0.5 0.004 0.471 0.471 0.004 −0.029 −0.029 1.47 1.982 1.982 0.526

0.5 −0.5 −0.5 0.486 −0.486 −0.486 −0.014 0.014 0.014 1.499 1.988 1.988 0.464
0.5 −0.5 0 0.486 −0.486 0 −0.014 0.014 0 1.499 1.988 2.018 0.464
0.5 −0.5 0.5 0.475 −0.471 0.471 −0.025 0.029 −0.029 1.459 1.982 1.982 0.526
0.5 0 −0.5 0.486 0 −0.486 −0.014 0 0.014 1.499 2.018 1.988 0.464
0.5 0 0 0.483 0 0 −0.017 0 0 1.48 2.009 2.009 0.497
0.5 0 0.5 0.474 0 0.452 −0.026 0 −0.048 1.432 1.988 1.949 0.58
0.5 0.5 −0.5 0.475 0.471 −0.471 −0.025 −0.029 0.029 1.459 1.982 1.982 0.526
0.5 0.5 0.5 0.472 0.422 0.422 −0.028 −0.078 −0.078 1.389 1.9 1.9 0.667
1.5 −1.5 −1.5 1.309 −1.309 −1.309 −0.191 0.191 0.191 1.324 1.723 1.723 0.662
2 0.4 2.1 1.4 0.112 0.454 −0.6 −0.288 −1.646 0.62 0.764 0.681 0.99
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confidence intervals may arise.
Also, it should be noted that for general designs, the BR estimates are not strictly

smaller than their ML counterparts, which suggests that they do not shrink towards the
origin according to the Euclidean distance in the parameter space. Obvious candidates
of distances that can be used to verify shrinkage are the ones that depend directly to the
form of the penalized likelihood, that is distances depending on the Jeffreys invariant prior
(see Subsection 4.2.3.3 below).

4.2.3.2 Finiteness

Consider estimation of β for model (4.1) by maximization of a penalized log-likelihood of
the form

l(a)(β) = l(β) + a log detF (β) , (4.9)

where a is a fixed positive constant. The case a = 1/2 corresponds to penalization of the
likelihood by the Jeffreys invariant prior.

Theorem 4.2.1: If any component of η = Xβ is infinite-valued, the penalized log-
likelihood l(a)(β) has value −∞.

Proof. It is sufficient to prove the argument when exactly one component of η is infinite-
valued. Without loss of generality, suppose that η1 is infinite-valued. For the corresponding
binomial probability π1 = exp(η1)/{1 + exp(η1)} we either have π1 = 1 (η1 = +∞) or
π1 = 0 (η1 = −∞). We can re-parameterize the model by defining new parameters
γ = γ(β) = Qβ, where Q is a p× p non-singular matrix. The new design matrix is defined
as G = XQ−1. By the spectral decomposition theorem and the symmetry of the Fisher
information, we can find a matrix Q — which possibly depends on β — that has the
following two properties:

i) GTWG = diag{i1, . . . , ip}, with W = diag{wr; r = 1, . . . , n}, wr = mrπr(1 − πr).
That is the information on γ is a diagonal matrix with diagonal elements the eigen-
values of the information on β.

ii) g1t =

{

1, for t = 1
0, otherwise

(t = 1, . . . , p) .

Hence, the new parameterization is constructed in order to have γ1 = η1 as its first
parameter and in such a way that all of its parameters are mutually orthogonal. Because
η1 is infinite-valued, ηr is necessarily infinite-valued for all r such that gr1 is non-zero
(ηr =

∑p
t=1 γtgrt). Collect all these r in a set C ⊂ {1, . . . , n}. Then, for r ∈ C the

binomial variances wr = mrπr(1 − πr) are zero. Hence

i1 =
n
∑

r=1

g2
r1wr =

∑

r∈C

g2
r1wr = 0 .

By the orthogonality of Q, (detQ)2 = 1 and so

detF = det{XTWX} = det{GTWG} =

p
∏

t=1

it = 0
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and the result follows by noting that the binomial log-likelihood l(β) is bounded above
by zero. Note that the requirement of mutual orthogonality of the parameters, can be
relaxed to orthogonality of γ1 to γ2, . . . , γp. In this case the Fisher information on β is
again singular because if we keep the second requirement for G valid, the first row and
column of the Fisher information are zero.

The above theorem enables us to state the following corollary, the main result towards
the finiteness of the BR estimates.

Corollary 4.2.1: Finiteness of the bias-reduced estimates. The vector β̂(a) that maxi-
mizes l(a)(β) has all of its elements finite, for positive a.

Proof. If any component of β is infinite, at least one component of the corresponding η(β)
is infinite-valued and so, by Theorem 4.2.1, l(a)(β) has value −∞. Hence, there exists β̂(a),
with finite components, such that

β̂(a) = arg max
β

l(a)(β) (4.10)

because l(a)(β) can always take finite values — for example, by the choice β = 0, which
corresponds to binomial probabilities πr = 1/2 for every r = 1, . . . , n and is the point where
the determinant of the Fisher information attains its global maximum (see Theorem 4.2.2
below).

For a = 1/2, the above corollary refers to the finiteness of the BR estimates for binary
logistic regression models.

4.2.3.3 Shrinkage towards the origin

The shrinkage of the BR estimates towards the origin is a direct consequence of the
penalization of the likelihood function by Jeffreys invariant prior. This is shown through
the two following theorems that describe the functional behaviour of log detF (β).

Theorem 4.2.2: Let β be the p-dimensional parameter vector of a binary logistic re-
gression model. If F (β) is the Fisher information on β, the function detF (β) is globally
maximized at β = 0.

Proof. The design matrix X is by assumption of full rank p and so we can always or-
thogonalize it. In practice this can be achieved by applying the Gram–Schmidt procedure
to its columns and thus expressing it in the form X = QR with Q a n × p matrix with
orthonormal columns (QTQ = Ip) and R a p× p non-singular matrix. In this way we can
write

det
{

XTW (β)X
}

=
det
{

QTW (β)Q
}

(detR)2
.

Note that R does not depend on β and thus, since (detR)2 is positive, det{XTW (β)X}
and det{QTW (β)Q} have stationary points of the same kind for the same values of β.
Further, the eigenvalues of W are its diagonal elements wr = mrπr(1 − πr). Denote the
ordered set of wr’s as {w(r); r = 1, 2, . . . , n} with w(1) ≤ w(2) ≤ . . . ≤ w(n).
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Lemma B.3.1 in Appendix B shows that

p
∏

t=1

λt ≤ det
{

GTAG
}

≤
p
∏

t=1

λn−p+t ,

for every positive definite n × n matrix A with eigenvalues λ1 ≤ . . . ≤ λn and any n × p
matrix G satisfying GTG = 1p, with 1p the p× p identity matrix. Thus

p
∏

t=1

w(t)(β) ≤ det
{

QTW (β)Q
}

≤
p
∏

t=1

w(n−p+t)(β) . (4.11)

Note that, for every r = 1, . . . , n, 0 < wr(β) ≤ 1/4, with the upper bound achieved when
πr = 1/2. Hence

p
∏

t=1

w(t)(β) ≤ 1

4p
and

p
∏

t=1

w(n−p+t)(β) ≤ 1

4p
.

By the form of the logistic regression model (4.1), the probability πr for a subject r is 1/2
only if all the components of β, associated with πr, are zero. Thus, at β = 0, inequalities
(4.11) become

1

4p
≤ det

{

QTW (0)Q
}

≤ 1

4p

and hence det{QTW (0)Q} = 1/4p, which is the maximum value that det{QTW (β)Q} can
take. Thus, det{XTW (β)X} is globally maximized at β = 0.

Theorem 4.2.3: Let β be the p-dimensional parameter vector of a binary logistic regres-
sion model. Further, let π be the n-dimensional vector of binomial probabilities. If F (β)
is the Fisher information on β, let F̄ (π(β)) = F (β). Then, the function f(π) = det F̄ (π)
is log-concave.

Proof. Let W̄ (π(β)) = W (β) and denote w̄r(πr) the diagonal elements of W̄ (π). Then
F̄ (π) = XT W̄ (π)X. For θ ∈ (0, 1), θ̃ = 1 − θ and any pair of n-vectors of probabilities π
and φ,

w̄r(θπr + θ̃φr) ≥ θw̄r(πr) + θ̃w̄r(φr) (r = 1, . . . , n)

because w̄r(πr) = mrπr(1−πr) and thus concave. Hence, by Lemma B.3.3 in Appendix B,

det
{

XT W̄ (θπ + θ̃φ)X
}

≥ det
{

θXT W̄ (π)X + θ̃XT W̄ (φ)X
}

and so, by the monotonicity of the logarithm function and using Lemma B.3.4,

log det
{

XT W̄ (θπ + θ̃φ)X
}

≥ θ log det
{

XT W̄ (π)X
}

+ θ̃ log det
{

XT W̄ (φ)X
}

,

which completes the proof.
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Once again, consider estimation by maximization of a penalized log-likelihood as in
(4.9) but now for non-negative a, and let a1 > a2 ≥ 0. Further, let β̂(a1) and β̂(a2) be
the maximizers of l(a1) and l(a2), respectively and π(a1) and π(a2) the corresponding fitted
n-vectors of probabilities. Then, by the concavity of log detF ′(π), the vector π(a1) is closer
to (1/2, . . . , 1/2)T than is π(a2), in the sense that π(a1) lies within the hull of that convex
contour of log detF ′(π) containing π(a2). With the specific values a1 = 1/2 and a2 = 0
the last result refers to penalization of the likelihood by Jeffreys invariant prior, and to
un-penalized likelihood, respectively.

Specifically, the above conclusion can be written as follows. Since a1 > a2 ≥ 0, by
Lemma B.3.5 with f(x) replaced by l(a2)(β) and g(x) replaced by (a1 − a2) log detF (β),
we obtain that

log detF ′(π(a1)) ≥ log detF ′(π(a2)) . (4.12)

Now let β, γ ∈ B. If, for example, we define

d (β, γ) = [log detF (β) − log detF (γ)]2 =
(

log det
{

F (β)F−1(γ)
})2

,

then, since log detF (β) = log detF ′(π(β)),

d (β, γ) =
[

log detF ′ (π(β)) − log detF ′ (π(γ))
]2
. (4.13)

Hence, by (4.12) and the concavity of log detF ′(π), we have that d(β̂(a1), 0) ≤ d(β̂(a2), 0) .
Thus the BR estimates shrink towards the origin, relative to the ML estimates, with
respect to this metric based on the Fisher information.

It is important to mention here that since the BR estimates are typically smaller in
absolute value than the ML estimates, the asymptotic variance of the BR estimator is,
correspondingly, typically smaller than that of the ML estimator, whenever the latter
exists. The same is true for the estimated first-order variances. Further, since the BR
estimator has bias of order O(n−2) and smaller asymptotic variance than the ML estimator,
it also has smaller asymptotic MSE. These remarks summarize the importance of the
shrinkage effect in this setting. The following example illustrates the shrinkage in the
variance and hence in the MSE of the estimator in the simple case of the estimation of
the log-odds of success for a single binomial trial.

Example 4.2.1: Estimation of the log-odds of success for a single binomial trial. Con-
sider a modified score function of the form U∗(β) = U(β) + A(β), where β is a scalar
parameter, Uβ is the ordinary score function and Ar is a O(1) modification. Further de-
note the true but unknown parameter value as β0 and let A ≡ A(β0). For a flat exponential
family indexed by the parameter β, and m units of information, the MSE of the resultant
estimator β̃ can be expressed as (see (6.7) in Chapter 6)

E
(

(β̃ − β0)
2
)

=
1

µ1,1
+̈
µ4 + 3µ3A+ µ1,1(2Ȧ+A2)

µ3
1,1

+
11µ2

3

4µ4
1,1

+̈O(m−3) , (4.14)

where Ȧ is the first derivative of A with respect to β evaluated at β0, +̈ denotes a drop of
the asymptotic order by O(m−1) and

µr ≡ µr(β0) = E

(

∂rl

∂βr
; β0

)

; µr,s ≡ µr,s(β0) = E

(

∂rl

∂βr

∂sl

∂βs
; β0

)

(r, s = 1, 2, . . .) .
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Also, the corresponding expression for the variance of β̃(a) (see (6.10) in Chapter 6) is

Var
(

β̃
)

=
1

µ1,1
+̈
µ4 + 2µ3A+ 2µ1,1Ȧ

µ3
1,1

+
10µ2

3

4µ4
1,1

+̈O(m−3) . (4.15)

As an illustrative example of the effect of the penalized likelihood to the MSE and the
variance of the resultant estimators in binary logistic regression, we consider the simplest
case of a single realization y of a binomial random variable Y with index m and probability
of success π. We are interested on the estimation of the log-odds β = log(π/(1 − π))
by a penalized likelihood of the form (4.9) with a ≥ 0. For a = 1/2, the penalized
likelihood refers to the bias-reduction method and for a = 0 to ML. In this context,
A(β) = a(1 − 2π(β)), Ȧ(β) = −2aπ(β)(1 − π(β)) and U(β) = y − mπ(β). Thus, the
resultant modified score equation is y+a−(m+a)π(β) = 0 and so the resultant estimator
has the familiar form β̃(a) = log((Y + a)/(m − Y + a)) (cf., Cox & Snell, 1989, §2.1.6).
Also, in this setting

µ1,1 = mπ(1 − π) ; µ3 = −mπ(1 − π)(1 − 2π) ; µ4 = −mπ(1 − π)(1 − 6π(1 − π)) ,

where π ≡ π(β0). A simple substitution to (4.14) and to (4.15) gives

E
(

(β̃(a) − β0)
2
)

=
1

mπ(1 − π)
+̈

7 − 4a(3 − a) − (20 − 16a(2 − a))π(1 − π)

4m2π2(1 − π)2
+̈O(m−3) ,

(4.16)
for the MSE and

Var
(

β̃(a)
)

=
1

mπ(1 − π)
+̈

3 − 4a+ 8(a− 1)π(1 − π)

2m2π2(1 − π)2
+̈O(m−3) , (4.17)

for the variance. Similar expressions are derived in Gart et al. (1985), who study the
performance of several estimators for the log-odds of success. From (4.16) and (4.17) up to
the O(m−1) term, the candidate estimators have the same asymptotic MSE and variance.
Their difference is in the O(m−1) order term, which depends on a. For m = 10, Figure 4.1
shows how the first-order bias, second-order variance and second-order MSE terms behave
for various values of α ∈ [0, 1] as the true probability of success (and consequently β0)
varies. Also, Figure 4.2 includes the corresponding graphs for the actual bias, variance
and MSE. Note that the curves for a = 0 have been excluded from the latter figure since
β̃(0) has infinite bias, variance and MSE.

The choice a = 0.5 is asymptotically optimal in terms of bias since β̃(1/2) has zero
first-order bias term and consequently its bias vanishes with O(m−2) rate, for every value
of the true probability, as m increases. However, in the present context, discussions on
the optimal choice of a based on MSE-related criteria should be avoided since such choice
depends on the true parameter value. For example, note the behaviour of (a ∈ (0.7, 0.8))-
estimators, where the second-order MSE term (Figure 4.1) increases rapidly for extreme
true probabilities. Also, while for moderate probabilities the actual MSE of the (a > 1/2)-
estimators is smaller than that of (a < 1/2)-estimators (see Figure 4.2), it increases rapidly
as the true probability gets close to zero or close to one (or, equivalently when β0 takes

50



Figure 4.1: First order bias term, second order MSE term and second order variance term of β̃(a), for a grid of values of a ∈ [0, 1]
against the true probability of success. The dotted curves represent values of a between the reported ones and with step 0.02.
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Figure 4.2: Actual bias, actual MSE and actual variance of β̃(a), for a grid of values of a ∈ (0, 1] against the true probability of success.
The dotted curves represent values of a between the reported ones and with step 0.02.
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extreme positive or negative values). This is caused by the large bias that such estimators
have for very small or very large probabilities. Hence, generic claims like “Values of
c > 1/2 correspond to priors stronger than Jeffreys, further reducing MSE at the cost of
introducing negative bias on the log-odds-ratio scale” (Bull et al., 2007, § 2.1), where c
is a in our setup, should be more carefully examined in terms of generality. One thing
to note is that a = 0.5 results in estimators that have the least positive second order
MSE and variance terms, revealing the beneficial impact of the shrinkage effect in terms
of variance and MSE when compared with (a < 1/2)-estimators. To conclude, the choice
a = 1/2 results in estimators with the smallest first-order bias and can be characterized
as balanced in terms of variance and MSE.

4.3 Generalization to multinomial responses

4.3.1 Baseline category representation of logistic regression

Consider a multinomial response Y with k categories labelled as 1, 2, . . . , k, and corre-
sponding category probabilities π1, π2 . . . , πk. In multinomial logistic regression the log-
odds for category s versus category b of the response is represented as follows:

log
πs

πb
= (βs − βb)

Tx (s, b = 1, . . . , k) , (4.18)

with x a vector of p covariate values (with its first element set to one if a constant is to be
included in the linear predictor) and βs ∈ ℜp (see, for example, Cox & Snell, 1989, §5.3,
for a thorough description). If, for identifiability reasons, we set βh = 0, where h is the
label of a reference category, the baseline category representation of the model (Agresti,
2002, §7.1) results:

log
πs

πh
= ηs = βT

s x (s = 1, 2, . . . , h− 1, h + 1, . . . , k) . (4.19)

Likelihood-based inferences using this model are invariant to the choice of the reference
category because the only thing affected is the parameterization used. Thus, without loss
of generality in what follows, we set as reference the k-th category.

4.3.2 Modified scores

Let q = k − 1 and γT = (βT
1 , . . . , β

T
q ) be the vector of the pq model parameters. Assume

that we have observed n pairs (yr, xr) with yr = (yr1, . . . , yrq)
T the vector of observed

frequencies which are realizations of a multinomially distributed random vector Yr with
index mr, and xr a p × 1 vector of known covariate values. The observed frequency for
the k-th category is yrk = mr −

∑q
s=1 yrs. Also, denote by πr = (πr1, . . . , πrq)

T the vector
of the corresponding category probabilities. By definition, the probability of the k-th
category is πrk = 1 −∑q

s=1 πrs. The multinomial log-likelihood can be written as

l(γ;X) =
∑

r

q
∑

s=1

yrs log
πrs

πrk
+
∑

r

mr log πrk ,
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where the log-odds log(πrs/πrk) is modelled according to (4.19). In what follows, the
matrix X with rows xT

r is assumed to be of full rank and if an intercept parameter is
present in the model the first element of xr is set to one for every r = 1, 2, . . . , n. Writing
Zr = 1q ⊗ xT

r for the q × pq model matrix, we can express (4.19) as

log
πrs

πrk
= ηrs =

pq
∑

t=1

γtzrst (r = 1, . . . , n ; s = 1, . . . , q) , (4.20)

where zrst is the (s, t)-th element of Zr and 1q is the q × q identity matrix.
Model (4.20) is a multivariate GLM with canonical link and hence by (2.12), the score

vector is
U(γ) =

∑

r

Ur(γ) =
∑

r

ZT
r (yr −mrπr) . (4.21)

Also, for the current case, the Fisher information for γ takes the form

F (γ) = ZTWZ =
∑

r

ZrWrZ
T
r ,

with W being a nq × nq block-diagonal matrix with non-zero blocks the q × q incomplete
covariance matrices Wr = Var(Yr) = mr diag (πr) −mrπrπ

T
r and ZT = (ZT

1 , ..., Z
T
n ).

Furthermore, by (3.19), the modified scores based on the expected information are

U∗
t (γ) = Ut(γ) +

1

2

∑

r

q
∑

s=1

trace
{

HrW
−1
r Krs

}

zrst (4.22)

=
∑

r

q
∑

s=1

(

yrs −mrπrs +
1

2
trace

{

HrW
−1
r Krs

}

)

zrst (t = 1, . . . , pq) ,

where Krs is a q × q symmetric matrix with (u, v)-th element the third order cumulants
of Yr, these being

κrsuv = Cum3(Yrs, Yru, Yrv) =







mrπrs(1 − πrs)(1 − 2πrs) s = t = u
−mrπrsπru(1 − πrs) s = t 6= u
2mrπrsπrtπru s, t, u distinct ,

with r = 1, . . . , n and s, u, v = 1, . . . , q (see, for example, McCullagh & Nelder, 1989,
p. 167, for the analytic form of higher order cumulants of the multinomial distribution).
Also,

W−1
r =

1

mr

(

1

πrk
Lq + diag

{

1

πrs
; s = 1, . . . , q

})

(r = 1, . . . , n) ,

where Lq is a q × q matrix of ones. The matrix Hr denotes the r-th diagonal block of

the nq × nq matrix H = Z
(

ZTWZ
)−1

ZTW consisting of n2 blocks, each of dimension
q × q. As already mentioned in Subsection 2.4.3, the matrix H is an asymmetric form of
the ‘hat matrix’ as is defined in the framework of multivariate GLMs (see, for example,
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Fahrmeir & Tutz, 2001, §4.2.2, for definition and properties). Despite the fact that we are
not going to consider the case of more general bias-reducing modifications for the reasons
mentioned in Section 3.8, note that, in the first equation of (4.22), a simple replacement
of zrst with z∗rst =

∑p
u=1 etuzrsu can be used to deduce modified scores based on the score

vector or possibly more generic modifications by controlling the matrix R. The scalars etu
are as defined in (3.8).

After some algebra (see Section B.5, Appendix B) the modified score functions are
found to take the form

U∗
t (γ) =

∑

r

q
∑

s=1

[

yrs +
1

2
hrss −

(

mr +
1

2
traceHr

)

πrs −
1

2

q
∑

u=1

πruhrus

]

zrst , (4.23)

for t = 1, . . . , pq, where hrsu is the (s, u)-th element of Hr.
When q = 1, (4.19) reduces to the binary logistic regression model with yr and πr

representing the number of successes observed and the probability of success for the r-
th subject, respectively. Also, the matrices Hr reduce to the scalars hr, which are the
diagonal elements of the hat matrix in the univariate case. Thus, in the binary case,
(4.23) reduces to

U∗
t (γ) =

∑

r

(

yr +
1

2
hr − (mr + hr)πr

)

zrt (t = 1, . . . , p) ,

confirming the form of the modified scores in (4.3).

4.3.3 The ‘Poisson trick’ and bias reduction

At this point we note that an alternative version of (4.23) can be obtained by making
use of the equivalence between multinomial logit models and Poisson log-linear models
(Palmgren, 1981).

The equivalent log-linear model to (4.19) is

log µrs = η̃rs = φr + ηrs ,

log µrk = η̃rk = φr (r = 1, . . . , n ; s = 1, . . . , q) ,

where µrs = τrπrs are the expectations of the independent Poisson random variables Yrs,
τr =

∑k
s=1 µrs, ηrs as in (4.20), and φr nuisance parameters. According to the above

model

τr =

(

1 +

q
∑

s=1

eηrs

)

expφr

and so,

φr = log(τr) − log

(

1 +

q
∑

s=1

eηrs

)

.
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Hence applying the transformation (γ, φ) → δ = (γ, τ), we obtain the equivalent log-linked
non-linear model,

log µrs = η̃rs = log τr + ηrs − log

(

1 +

q
∑

u=1

eηru

)

(s = 1, . . . , q) ; (4.24)

log µrk = η̃rk = log τr − log

(

1 +

q
∑

u=1

eηru

)

,

where τr are nuisance parameters.
Palmgren (1981), using the parameterization on (γ, τ), decomposed the Poisson log-

likelihood as the sum of a marginal, Poisson log-likelihood for τ and a conditional log-
likelihood given the observed totals, and proved the equivalence of the Fisher information
matrix on γ for the two alternative models, when the parameter space is restricted by
equating the nuisances τr with the multinomial totals. We proceed through the same
route, taking advantage of the orthogonality of τ and γ.

By (3.23) the modified scores in the case of a univariate canonically-linked non-linear
model and using penalties based on the expected information are

Ũ∗
t = Ũt +

1

2

∑

r

k
∑

s=1

h̃rss
Var(Yrs)

Cum3(Yrs)
z∗rst (4.25)

+
1

2

∑

r

k
∑

s=1

Var(Yrs) trace
{

F̃−1D2 (η̃rs; δ)
}

z∗rst (t = 1, . . . , n+ pq) ,

where D2 (η̃rs; δ) is the Hessian of η̃rs with respect to δ, and Ũ and F̃ are the scores and
the Fisher information on δ, respectively. Furthermore, h̃rss is the s-th diagonal element
of the k × k, r-th diagonal block H̃r of the asymmetric hat matrix H̃ = Z∗F̃−1Z∗T W̃ for
model (4.24) (see, Section B.6 in Appendix B for the identities connecting the elements
of H̃r with the elements of Hr) . Here, Z∗T = (Z∗

1
T , . . . , Z∗

n
T ) where Z∗

r (δ) = D (η̃r; δ) is
the k× (n+ pq) Jacobian of η̃rs with respect to the parameters δ and has (s, t)-th element
z∗rst. Also, because of the independence of the Poisson variates, W̃ is a diagonal matrix
with diagonal elements Var(Yrs) = Cum3(Yrs) = µrs for s = 1, . . . , k and r = 1, . . . , n. By
exploiting the structure of Z∗

r (see Section B.6 in Appendix B) and noting that D2 (η̃rs; δ)
is the same for every s = 1, 2, . . . , k, the third summand in the right hand side of (4.25) is
zero and the modified scores for γ are found to take the elegant form

Ũ∗
t =

∑

r

q
∑

s=1

[

yrs +
1

2
h̃rss −

(

τr +
1

2
trace H̃r

)

πrs

]

zrst ,

for t = 1, . . . , pq. On the parameter space restricted by τr = mr, the scores and the Fisher
information on γ are equal to their counterparts for the multinomial logit model. Hence,
in the restricted parameter space, the modified scores for γ corresponding to model (4.24)
are given by

Ũ∗
t =

∑

r

q
∑

s=1

[

yrs +
1

2
h̃rss −

(

mr +
1

2
trace H̃r

)

πrs

]

zrst , (4.26)
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for t = 1, . . . , pq.
The key results for the equivalence of (4.26) with the modified scores (4.23) for the

multinomial logistic regression model are given in the following theorem and corollary.

Theorem 4.3.1: Let Hr be the q × q, r-th block of the asymmetric hat matrix H
for the multinomial logistic regression model with parameters γ, and H̃r the k × k, r-
th block of the asymmetric hat matrix H̃ for the equivalent Poisson log-linear model in
(γ, φ) parameterization. If we restrict the parameter space by τr =

∑k
s=1 µrs = mr, for

r = 1, 2, . . . , n, we have

h̃rss = πrs + hrss −
q
∑

u=1

πruhrus (s = 1, . . . , q) ;

h̃rkk = πrk +

q
∑

s,u=1

πruhrus .

The proof is in Section B.6, Appendix B.

Corollary 4.3.1: Using the same notation and conditions as in Theorem 4.3.1,

trace H̃r = traceHr + 1 (r = 1, . . . , n) . (4.27)

Proof. If we consider the sum
∑k

s=1 h̃rss and replace h̃rss by Theorem 4.3.1, the result

follows by the fact that
∑k

s=1 πrs = 1.

Obviously, in the light of these results,

Ũ∗
t = U∗

t (t = 1, . . . , pq) ,

and so either approach can be used for obtaining the BR estimator of γ. In ML, the
likelihood equations for the nuisances are τ̂r = mr, r = 1, . . . , n and so the parameter space
is restricted automatically. In contrast, for maximum penalized likelihood, it is necessary
to restrict the parameter space by {τr = mr}; only γ̂ should be affected by the bias-
reducing modification, not τ̂ . Despite the fact that by the orthogonality of γ and τ , both
restricted and unrestricted maximum penalized likelihood result in the same estimates for
γ, the reason for the restriction is that without it, the modified score equations would
result in an estimator for τ , of the form

τ̃r = mr +
1

2
trace H̃r (r = 1, . . . , n) ; (4.28)

the multinomial totals in the fitted model would then be incorrect.

4.3.4 Iterative adjustments of the response

The forms of (4.23) and (4.26) suggest two alternative pseudo-response representations:
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i)

y∗rs = yrs +
1

2
hrss −

1

2
traceHrπrs −

1

2

q
∑

u=1

πruhrus , (4.29)

y∗rk = yrk −
1

2
traceHrπrk +

1

2

q
∑

s,u=1

πruhrus (r = 1, . . . , n ; s = 1, . . . , q) ,

ii)

ỹ∗rs = yrs +
1

2
h̃rss −

1

2
trace H̃rπrs (r = 1, . . . , n ; s = 1, . . . , k) .

Note that both pseudo-data representations above are constructed in order to have the
multinomial pseudo-totals equal to the totals observed or fixed by design. In this way
and by the same arguments as in the binomial case, we avoid any possible systematic
underestimation of standard errors by some artificial inflation of the multinomial totals.

If the two last terms in the right of the above expressions were known constants, the BR
estimator would then be formally equivalent to the use of ML after adjusting the response
yr to y∗r . However, in general, both Hr and H̃r depend on γ, exceptions to this being very
special cases such as saturated models. The utility of the above definitions of pseudo-
observations is that they directly suggest simple, iterative computational procedures for
obtaining the BR estimates (Section 4.3.7 below).

4.3.5 Saturated models and Haldane correction

Consider a saturated model of the form (4.19). The model then has nq parameters and
the hat matrix H is the identity. Hence the modified score equations in this case take the
form

0 =
∑

r

q
∑

s=1

(

yrs +
1

2
−
(

mr +
k

2

)

πrs

)

zrst (t = 1, . . . , nq) .

Thus the maximum penalized likelihood method is equivalent to the addition of 1/2 to
each frequency and then the application of ML using the modified responses. So, in this
case, the maximum penalized likelihood is equivalent to the Haldane correction (Haldane,
1956) introduced for avoiding singularities in the estimation of log-odds in sparse arrays
and producing the well-known bias-reducing “empirical logistic transform”. Parameter
estimates in this case are obtained by solving with respect to γ the equations

ηrs(γ) =

nq
∑

t=1

γtzrst = log
yrs + 1/2

yrk + 1/2
(r = 1, . . . , n; s = 1, . . . , q) .

4.3.6 Properties of the bias-reduced estimator

The finiteness properties of the BR estimator for binomial-response logistic regression
generalize directly to the case of multinomial response model. In particular, the finiteness
of the BR estimator can be proved by direct use of the results in Albert & Anderson
(1984), Santner & Duffy (1986) and Lesaffre & Albert (1989).
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4.3.6.1 Finiteness

Theorem B.4.4 in Appendix B (Lesaffre & Albert, 1989) shows the behaviour of the inverse
of the Fisher information in an iterative fitting procedure when complete or quasi-complete
separation of the sample points occurs. Specifically, if F(c) is the Fisher information on γ
evaluated at the c-th iteration, complete or quasi-complete separation occurs if and only

if at least one diagonal element of F−1
(c) diverges as c grows. Thus trace

(

F−1
(c)

)

diverges as

the number of iterations tends to infinity so that at least one eigenvalue of F−1
(c) diverges.

Hence, det (F(c)) → 0 as c tends to infinity.
Now, consider estimation by maximization of a penalized log-likelihood function of the

form
l(a)(γ) = l(γ) + a log detF (γ) ,

where a is a fixed positive constant, and denote by γ̃ the resultant estimator. Below we
show that γ̃ takes finite values even when either complete or quasi-complete separation
occurs.

Theorem 4.3.2: In the case of complete separation of the data points, the estimator
that results from the maximization of l(a) takes finite values.

Proof. Let ΓC be the set of all γ’s satisfying (B.11) in Definition B.4.1. Then, as in Albert
& Anderson (1984), ΓC is the interior of a convex cone. The generic element of ΓC can be
denoted as kα, with α ∈ ΓC and k > 0. By Theorem B.4.1 the ML estimate γ̂ falls on the
boundary of the parameter space; this is proved in Albert & Anderson (1984) by showing
that if we move along any ray kα in ΓC and let k increase towards infinity the likelihood
attains its maximum value of 1. In addition, the strict concavity of the log-likelihood
guarantees that this maximum value is attained only when γ is of the form limk→∞ kα,
for every α ∈ ΓC. Further, by our previous discussion det(F (kα)) → 0 as k → ∞ and
hence the value of the penalized likelihood diverges towards −∞. Consequently, since
there is always a choice of γ, for example γ = 0, such that l(a)(γ) is finite, the maximum
penalized likelihood estimator γ̃ does not have the form limk→∞ kα with α ∈ ΓC . Further,
by the strict concavity argument above, 0 = l(γ̂) > l(γ̃), giving

detF (γ̃) > detF (γ̂) = 0 .

Hence, there always exists γ̃ = arg maxγ∈Γ l
(α)(γ) with finite components.

Theorem 4.3.3: In the case of quasi-complete separation of the data points, the esti-
mator that results from the maximization of l(a) takes finite values.

Proof. We use the same line of argument as in the proof of Theorem 4.3.2 but with some
modifications. First, we replace the set ΓC by ΓQ which is the set of all vectors γ satisfying
(B.12) in Definition B.4.2 of quasi-complete separation. Santner & Duffy (1986), correcting
technical details in the proofs in Albert & Anderson (1984), show that if ΓC is empty and
ΓQ 6= {0} then ΓQ is a convex cone. Further, they define γ(k, α∗, α) = α∗ + kα with
α∗ ∈ ℜpq and α ∈ ΓQ \ {0}. By this construction any vector in ℜpq can be described as
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the sum of some arbitrary vector α∗ ∈ ℜpq and a vector in the convex cone ΓQ, excluding
the zero vector. In Albert & Anderson (1984), it is proved that for fixed α∗ and α,
l(γ(k, α∗, α)) is a strictly increasing function of k with some upper asymptote lu < 0 and
so the ML estimates do not exist. Hence, if we use lu in the place of the value 0 for the
log-likelihood in the case of complete separation, the same arguments as in the proof of
Theorem 4.3.2 can be used for the finiteness of γ̃ in quasi-separated cases.

4.3.6.2 Shrinkage

As in the binomial case, a complete proof of shrinkage should consist of two parts; a part
showing that Jeffreys prior has a maximum at γ = 0 and a part for the log-concavity of
Jeffreys prior with respect to the category probabilities. Then the same discussion as in
the binomial response case applies.

The first part has already been covered by Poirier (1994) who proves analytically that
the Jeffreys prior for multinomial response logistic regression models has a local mode at
γ = 0.

However, the second part is much more complicated to put formally in the multinomial
setting on account of the fact that W is no longer diagonal but is block diagonal. Despite
the fact that we have not encountered empirical evidence contradicting shrinkage (see also
the empirical results in Bull et al., 2002) with respect to the metric (4.13), a formal proof
remains to be formulated and it is the subject of further work.

4.3.7 IGLS procedure for obtaining the bias-reduced estimates

4.3.7.1 Iterative algorithm

For general models, we propose a modification of the IGLS algorithm for ML estimation.
By (2.15), the r-th working variate vector for ML has the form

ζr = Zrγ +W−1
r (yr −mrπr) (r = 1, . . . , n) ,

and so its components have the form

ζrs = log
πrs

πrk
+

q
∑

u=1

yru −mrπru

mrπrk
+
yrs −mrπrs

mrπrs

= log
πrs

πrk
+
yrsπrk − yrkπrs

mrπrsπrk
,

for r = 1, . . . , n and s = 1, . . . , q. If we replace the observed responses with the pseudo-
responses in (4.29), we obtain the modified working variate that can be used for obtaining
the BR estimates as follows.

Assume that the current estimates are γ(c). The updated estimate γ(c+1) is obtained
from the following three steps:

i) Calculate

H(c) = Z
(

ZTW(c)Z
)−1

ZTW(c) ,

with H(c) = H
(

γ(c)

)

.
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ii) At γ(c) evaluate the current value of the modified working variates

ζ∗rs = log
πrs

πrk
+
y∗rsπrk − y∗rkπrs

mrπrsπrk
,

for r = 1, . . . , n and s = 1, . . . , q, where y∗rs are as in (4.29).

iii) The updated estimate is then

γ(c+1) =
(

ZTW(c)Z
)−1

ZTW(c)ζ
∗
(c) ,

with ζ∗ = (ζ∗11, . . . , ζ
∗
1q, . . . , ζ

∗
n1, . . . , ζ

∗
nq)

T .

The iteration of the above scheme until, for example, the changes to the estimates are
sufficiently small, returns the BR estimates. By construction, the iteration is exactly the
same as the IGLS iteration for ML but with the observed counts yrs replaced by y∗rs in the
working variate formulae. In this sense this is a modification of the standard IGLS that
is often used for ML estimation. More specifically, if we replace y∗rs and y∗rk as in (4.29)
and use identity (B.21) in Appendix B, the modified working variates can be written in
the elegant form

ζ∗rs = ζrs − ξrs ,

where ξrs = −hrss/(2mrπrs) +
∑q

u=1 hrsu/(2mrπrk), for r = 1, . . . , n and s = 1, . . . , q. So
the bias-reduction method can be implemented simply by subtracting ξrs from the working
variates of the standard IGLS procedure for ML.

Note that if we drop the dimension of the response to q = 1, everything reduces to the
results of the previous section for binary response models.

4.3.7.2 Nature of the fitting procedure

As starting values γ(0) for the parameters we can use the ML estimates after adding 1/2
to the initial frequencies. The correction to the initial frequencies is made in order to
ensure the finiteness of the starting values even in cases of complete or quasi-complete
separation. Also, this procedure will generally converge with linear rate, in contrast to
the standard IGLS which converges with quadratic rate. In terms of the equivalent Fisher
scoring procedure, the reason is that only the first term F (γ) = ZTW (γ)Z of the Jacobian
of the modified score vector is used. However, in all of the various examples in which we
have applied the procedure with the above starting values, satisfactory convergence is
achieved after a very small number of iterations, and the difference in run-time from the
standard IGLS for ML is small.

Further, note that since the Fisher information F (γ) is positive definite, the above
iteration will always deliver an increase in the penalized log-likelihood.

4.3.7.3 Estimated standard errors

By the general results of Section 3.5, the variance of the asymptotic distribution of the
BR estimator agrees with the variance of the asymptotic distribution of the ML estimator,
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both being the inverse of the Fisher information evaluated at the true parameter value γ0.
Thus, estimated standard errors for the BR estimates can be obtained as a byproduct of the
suggested procedure by using the square roots of the diagonal elements of

(

ZTW (γ)Z
)−1

evaluated at the final iteration.

4.4 On the coverage of confidence intervals based on the penalized like-

lihood

Heinze & Schemper (2002) and later Bull et al. (2007) illustrated through empirical work
that confidence intervals for the BR estimates based on the ratio of the profiles of the
penalized likelihood (Heinze-Bull intervals, for short) have better coverage properties than
both the usual Wald-type intervals and the ordinary likelihood-ratio intervals. However, we
object that such confidence intervals could exhibit low or even zero coverage for hypothesis
testing on extreme parameter values. This is a direct consequence of the shape of the
penalized likelihood, which does not allow confidence intervals with extreme left or right
endpoints.

The same behaviour appears for symmetric confidence intervals for the log-odds in a
contingency table. For example, for the log odds-ratio β of a 2× 2 contingency table with
counts y11, y12, y21 and y22, Gart (1966) proposes a 100(1−α) per cent confidence interval
of the form

log
(y11 + 1/2)(y22 + 1/2)

(y12 + 1/2)(y21 + 1/2)
± Φ−1(α/2)

√

√

√

√

2
∑

r=1

2
∑

s=1

1

yrs + 1/2
, (4.30)

where Φ−1(α/2) is the α/2 quantile of the normal distribution. So, the counts are modified
by appending 1/2 to them (the same effect as the bias-reduction method would have for
such an estimation problem), and then a Woolf interval (Woolf, 1955) is constructed based
on the modified counts. Agresti (1999) illustrates that the coverage of intervals of the form
(4.30) deteriorates as the true parameter value increases, because “for any such interval
with given n1 and n2, there exists θL0 < θU0 such that, for all θ < θL0 and θ > θU0,
the actual coverage probability equals zero” (Agresti, 1999, §2, p. 599), where, in our
notation, n1 and n2 are m1 = y11 + y12 and m2 = y21 + y22, respectively, θ is exp(β) and,
for any given n1 and n2 , i) θL0, ii) θU0 are some i) lower and ii) upper finite bounds for
the values of the i) lower and ii) upper end-points of the Gart interval (actually, Agresti,
1999, deals with confidence intervals for the odds ratio and considers the Gart interval by
exponentiating its endpoints, but (4.30) for the log odds-ratio has the same behaviour).

The same argument, as the quoted above, applies for Heinze-Bull confidence intervals.
As a non-trivial illustration of our objection, we consider a variant of the simple example in
Copas (1988, §2.1). Assume that binomial observations y1, y2 ,y3 ,y4 ,y5, each with totals
m, are made independently at each one of five design points xr = cr − c (r = 1, . . . , 5),
where c is some real constant. The model to be fitted is

log
πr

1 − πr
= βxr (r = 1, . . . , 5) .
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This is a non-trivial example in the sense that the bias-reduction method iteratively inflates
the observed counts by quantities that depend on the parameter value (half a leverage).

We set c = 2 and perform a complete enumeration of the 1024 possible samples that
could arise for m = 3. We consider confidence intervals for β based on the ordinary
likelihood ratio (LR) statistic W (β) = 2l(β̂)− 2l(β) and on the penalized-likelihood ratio
(PLR) statistic W ∗(β) = 2l∗(β̃) − 2l∗(β), where β̂ and β̃ are the ML and BR estimates
for β. The latter statistic is the one that was used by Heinze & Schemper (2002) and
Bull et al. (2002). Imitating the construction of the ordinary likelihood ratio interval, the
endpoints of the 100(1 − α) per cent Heinze-Bull interval are obtained by the solution of
the inequality W ∗(β) < χ1−α where χ1−α is the 1−α quantile of a chi-squared distribution
with 1 degree of freedom.

For the vector of observed responses y = (y1, . . . , y5)
T , denote by CLR(y, α) and by

CPLR(y, α) the 100(1 − α) per cent LR and Heinze-Bull (or PLR) confidence intervals
for β. Based upon the complete enumeration, we calculate the corresponding coverage
probabilities E[I(β0 ∈ CLR(Y, 0.05))] and E[I(β0 ∈ CPLR(Y, 0.05))] on a fine grid of values
for the true parameter β0, where I(B) takes value 1 if condition B is satisfied and 0 else.
Figure 4.3 shows the coverage probabilities plotted against β0.

First, note the familiar oscillating effect of the coverage that is caused by the discrete
nature of the responses (see, for example Brown et al., 2001, where oscillation is studied
for intervals for a binomial proportion).

In Region 1 (see Figure 4.3) the PLR based interval outperforms the LR interval in
terms of coverage. More explicitly, within that region the mean coverage for LR is 0.926 to
three decimals, in contrast to 0.956 for the PLR. This illustrates the favourable behaviour
of PLR intervals for moderate parameter values, having coverage very close to the nominal
within Region 1 and avoiding the undesirable drop of coverage (long spikes) that the LR
interval illustrates for |β0| ≃ 0.4. However, outside Region 1 the PLR confidence interval
starts to misbehave by illustrating severe oscillation in its coverage with long spikes below
the nominal level. Eventually, the coverage drops to zero for |β0| & 3.1. In contrast the
LR confidence interval tends to have coverage 1 as |β| → ∞ because the expected length
of the interval tends to ∞ as |β| → ∞.

Increasing the absolute value of the c constant, we can construct much more severe
examples where the loss of coverage occurs arbitrarily close to β0 = 0. For example, for
c = 3 (the plots are not shown here) the loss of coverage occurs for |β0| & 2. However, since
c controls just the scale of the covariate values (and thus the scale of the estimate), one
might argue that decreasing the absolute value of c, we can achieve the drop of coverage
to take place after arbitrarily large absolute values of the true parameter. However, the
loss of coverage will always take place, eventually. This is an undesirable property of such
intervals and is mentioned neither in Heinze & Schemper (2002) nor in Bull et al. (2007).

A conservative workaround could be the definition of an interval having the form

CLR(y, α) ∪ CPLR(y, α) .

A 100(1 − α) per cent interval of this form has coverage probability

E [I ({β0 ∈ CLR(Y, α)} ∪ {β0 ∈ CPLR(Y, α)})] .
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In Figure 4.4 we give the corresponding to Figure 4.3 (c = 2, m = 3, α = 0.05) plot for
such an interval. Despite its global conservativeness, this interval inherits the desirable
properties of CPLR(y, α) in Region 1 (mean coverage for Region 1 is 0.969) and at the
same time avoids the irregular oscillation and the complete loss of coverage in Region 2.
The extension of our proposal in problems where the target parameter β has dimension
p > 1 is direct: for every component βt (t = 1, . . . , p) of the parameter vector, replace l(β)
and l∗(β) in the statistics W (β) and W ∗(β) by lP(βt) and l∗P(βt), which are the profile
likelihood and profile penalized likelihood, respectively.

4.5 General remarks and further work

By the finiteness and shrinkage properties of the BR estimator and the fact that the BR
estimates can be easily obtained via a modified IGLS procedure, we conclude that the
application of the bias-reduction method is rather attractive and should be regarded as an
improvement over traditional ML in logistic regression models. All the theoretical results
that have been presented can be supported by the extensive empirical studies in Heinze
& Schemper (2002) and Bull et al. (2002).

In addition, as illustrated in the previous section, PLR based intervals (Heinze &
Schemper, 2002; Bull et al., 2007) could misbehave with complete loss of coverage. In this
direction, we have proposed an alternative interval which, despite being conservative, it
avoids the loss of coverage for large parameter values and its coverage probability illustrates
smaller oscillation across the parameter space.

A formal framework for measuring the goodness of fit is still lacking, and further work
is required in this direction.
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Figure 4.3: Coverage probability of 95 per cent confidence intervals based on the likelihood ratio (LR) and the penalized-likelihood ratio
(PLR), for a fine grid of values of the true parameter β0.
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Figure 4.4: Coverage probability of the 95 per cent confidence interval defined as the union of the intervals CLR(y, 0.05) and CPLR(y, 0.05),
for a fine grid of values of the true parameter β0.
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Chapter 5

Development for some curved

models

5.1 Introduction

In the previous chapter we considered the effect of the bias-reduction method when applied
to logistic regression, both for binomial and multinomial responses. These models are flat
exponential families in canonical parameterization and both the application and the fur-
ther derivation of theoretical results were significantly facilitated by the re-expression of
the problem in terms of a penalized likelihood function, where the penalty is the Jeffreys
invariant prior. However, as already seen in Chapter 3, when we deviate from flat expo-
nential families, a penalized likelihood corresponding to the modified scores can have an
intractable form or does not even exist. In most cases, this makes the derivation of elegant
theoretical results difficult.

Continuing our treatise on models for categorical responses, the bias-reduction method
is applied to the cases of binomial-response probit, complementary log-log and log-log
models, deviating in this way from the canonical (logistic) link. Specifically, in the case of
the complementary log-log link, some work has already been done by Mehrabi & Matthews
(1995), who only consider a non-linear predictor complementary log-log model, with a
single parameter and an offset, for modelling limiting dilution assays. We extend their
derivation to more general regression settings, but with linear predictors. We also consider
the “2-parameter logistic” (2PL) model (Birnbaum, 1968). Apart from its methodological
importance in item response theory, our interest in the 2PL model model stems from the
special form of the predictor which, despite being a non-linear function of the parameters, is
connected with the extensively studied case of logistic regression. All of the aforementioned
models can result in infinite maximum likelihood (ML) estimates with positive probability
and it is illustrated that the bias-reduced (BR) estimates are always finite. Also, in each
case we discuss aspects of the nature of shrinkage, based mainly on empirical results.
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5.2 Binomial response models with non-canonical links

This section concerns the behaviour of the BR estimator under changes of the link structure
in binary-response generalized linear models (GLMs). The alternatives considered are the
commonly-used probit, complementary log-log (c-log-log) and log-log links. Applying
the results of Chapter 3, we derive explicit expressions for the modified score functions.
Their form enables the construction of pseudo-data representations by ‘trading’ quantities
between the responses and the binomial totals. Such a pseudo-data representation is used
to derive a general fitting algorithm for obtaining the BR estimates, which can be used with
already implemented ML fitting procedures and is an alternative to the general modified
iterative re-weighted least squares (IWLS) procedure that was suggested in Section 3.7. We
conclude with empirical studies, that mainly demonstrate the extension of the finiteness
and shrinkage properties of the BR estimator for these curved families.

5.2.1 Modified score functions

We consider the same setting as in Section 4.2, namely realizations y1, . . . , yn of n inde-
pendent binomial random variables Y1, . . ., Yn with probabilities of success π1, . . . , πn and
binomial totals m1, . . . ,mn, respectively. We denote the p-dimensional parameter vector
as β = (β1, . . . , βp)

T , and xrt denotes the (r, t)-th element of a n × p design matrix X,
assumed to be of full rank; if an intercept parameter is to be included in the models we can
just set the first column of X to be a column of ones. For linear predictors ηr =

∑p
t=1 βtxrt

(r = 1, . . . , n), the form of the probit, c-log-log and log-log models is given in (5.1), where
Φ(.) denotes the cumulative distribution function of the standard normal distribution and
Φ−1(.) its inverse.

Link Model Specification

probit Φ−1(πr) = ηr (r = 1, . . . , n)
c-log-log log(− log(1 − πr)) = ηr (r = 1, . . . , n)
log-log − log(− log(πr)) = ηr (r = 1, . . . , n)

. (5.1)

For these models, the modified score functions based on the expected information
can be obtained by a simple substitution of the corresponding second derivatives d′r =
∂2µr/∂η

2
r and of the corresponding working weights wr (both given explicitly in Table 3.2)

into the expression

U∗
t =

∑

r

dr

κ2,r

(

yr +
1

2
hr
d′r
wr

−mrπr

)

x∗rt (t = 1, . . . , p) ,

where κ2,r = mrπr(1 − πr) are the binomial variances. This expression has been derived
in Section 3.7 (see (3.26)). By Table 3.2, the probit model has d′r = −mrηrφ(ηr) and
wr = mr[φ(ηr)]

2/[πr(1 − πr)], and so the modified score functions take the form

U∗
t =

∑

r

φ(ηr)

πr(1 − πr)

(

yr −
1

2
hr
πr(1 − πr)ηr

φ(ηr)
−mrπr

)

xrt (t = 1, . . . , p) , (5.2)
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where φ(.) denotes the density function of the standard normal distribution. For the
c-log-log model, d′r = mr(1 − πr)e

η
r (1 − eηr ) and wr = mre

2ηr (1 − πr)/πr. Hence,

U∗
t =

∑

r

eηr

πr

(

yr +
1

2
hr
πr(1 − eηr )

eηr
−mrπr

)

xrt (t = 1, . . . , p) . (5.3)

For the log-log model d′r = mrπre
−ηr(e−ηr − 1) and wr = mre

−2ηrπr/(1 − πr), and so

U∗
t =

∑

r

e−ηr

1 − πr

(

yr +
1

2
hr

(1 − πr)(1 − e−ηr)

e−ηr
−mrπr

)

xrt (t = 1, . . . , p) . (5.4)

We should mention that in contrast to the case of logistic regression, Theorem 3.7.1
shows that there does not exist a penalized likelihood corresponding to either (5.2), (5.3),
or (5.4). Hence, the location of their roots does not correspond to a maximization problem.
The BR estimator in this cases should be viewed merely as a first-order unbiased “Z-
estimator” (van der Vaart, 1998, § 5.2). This hinders the development of formal results
on its finiteness and shrinkage properties; the method of proof that was used for logistic
regressions in Chapter 4 cannot be applied here.

5.2.2 Obtaining the bias-reduced estimates via IWLS

The BR estimates can be obtained by the modified IWLS procedure described in Sec-
tion 3.8. As is shown therein, the algorithm can be implemented simply by modifying
the usual working observations ζr for ML to ζr − ξr, with ξr = −Srrd

′
r/(2dr), where

Srr = xT
r (XTWX)−1xr is the asymptotic variance of the ML estimator of ηr and W is the

diagonal matrix that has diagonal elements the working weights wr, r = 1, . . . , n. By the
results in Table 3.2, the form of ξr for the logistic regression model (see Subsection 4.2.2)
and the models considered here is given in Table 5.1. The same table is also presented in
McCullagh & Nelder (1989, § 15.2.2) and in Cordeiro & McCullagh (1991, Table 1).

Table 5.1: Adjustments ξr for the modified IWLS in the case of logit, probit, c-log-log and log-log
links.

Model ξr

logit Srr(πr − 1/2)
probit Srrηr/2
c-log-log Srr(e

ηr − 1)/2
log-log Srr(1 − e−ηr)/2
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5.2.3 Refinement of the pseudo-data representation: Obtaining the bias-reduced
estimates using already implemented software

An alternative procedure for obtaining the BR estimates arises directly from the form of the
modified score functions in (5.2), (5.3) and (5.4). The differences from the corresponding
ordinary score functions

Ut =
∑

r

dr

mrπr(1 − πr)
(yr −mrπr)xrt (t = 1, . . . , q) , (5.5)

are the extra terms that depend on hr. These terms are additive to the responses and
thus we can directly ‘trade’ parts of them between yr and the totals mr. In this way
we can obtain a pseudo-data representation (pseudo-responses and pseudo-totals) that
has certain desirable properties. Table 3.2 gives the obvious forms for such pseudo-data;
the extra term is added to the response and the totals are left as observed or fixed by
design. However, in that form the pseudo-responses can take negative values or become
even greater than the binomial totals, thus violating the range of the actual responses. A
natural requirement of the pseudo-data would be to be able to imitate the nature of the
actual responses and totals. More formally we would like to find pseudo-responses y∗r and
pseudo-totals m∗

r which satisfy the condition 0 ≤ y∗r ≤ m∗
r but which, at the same time,

respect the form of the modified score functions. There is not a general solution to this
task and each model has to be treated separately. The only general rule, which is imposed
directly by the form of the modified scores, is that every quantity that is transferred from
the responses to the totals is divided by −πr before attributing it to the pseudo-totals.
This rule can be used alongside with the obvious calculation of adding and subtracting
the same quantity to the responses.

For the probit model, and temporarily omitting the subject index r, the crude pseudo-
responses in Table 3.2 are re-expressed as

Pseudo-responses y∗
÷(−π)−→ Pseudo-totals m∗

P1. y − 1
2 h

π(1−π)η
φ(η) m

P2. y − 1
2 h

πη
φ(η) m− 1

2 h
πη

φ(η)

P3. y − 1
2 h

πηI(η<0)
φ(η) m+ 1

2 h
η[I(η≥0)−π]

φ(η) ,

where I(B) = 1 if the condition B is satisfied, and 0 else. For the c-log-log model we have

Pseudo-responses y∗
÷(−π)−→ Pseudo-totals m∗

P4. y + 1
2 h

π(1−eη)
eη m

P5. y + 1
2 h

π
eη m+ 1

2 h

and for the log-log model,
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Pseudo-responses y∗
÷(−π)−→ Pseudo-totals m∗

P6. y + 1
2 h

(1−π)(e−η−1)
e−η m

P7. y + 1
2 h(1 − π) − 1

2 h
(1−π)
e−η m

P8. y + 1
2 h(1 − (1−π)

e−η ) m+ 1
2 h .

Note that the pseudo-data representations derived in this way for each of the three
cases (P1, P2, P3 for the probit, P4, P5 for the c-log-log and P6, P7, P8 for the log-
log) are equivalent in the sense that if we replace the actual responses yr with y∗r and
the actual totals mr with m∗

r in the expression (5.5) for the ordinary score functions, we
obtain the corresponding modified scores. Also, note that by substituting ηr according
to the corresponding model specification in (5.1), the derived pseudo-data representations
can be expressed in the general form

Pseudo-responses y∗r = yr +
1

2
hraR(πr)

Pseudo-totals m∗
r = mr +

1

2
hraT(πr)

(r = 1, . . . , n) . (5.6)

According to Section 4.2, in the case of logistic regression aR(πr) = 1 and aT(πr) =
2. For the other link functions, the form of the adjustment functions aR(π) and aT(π)
corresponding to P3, P5, and P8 is given in Table 5.2.

Table 5.2: Adjustment functions aR(π) and aT(π) for the logit, probit, c-log-log and log-log links
in binary response GLMs

Link aR(π) aT(π)

logit 1 2

probit − πΦ−1(π)I(π<1/2)
φ(Φ−1(π))

Φ−1(π)[I(π≥1/2)−π]
φ(Φ−1(π))

c-log-log − π
log(1−π) 1

log-log 1 + 1−π
log π 1

Since the leverages hr take values in [0, 1], the requirement 0 ≤ y∗r ≤ m∗
r is translated

in terms of aR(.) and aT(.) to 0 ≤ aR(πr) ≤ aT(πr). All of the adjustments in Table 5.2
satisfy the latter inequality and so they respect the range of the actual responses and totals
(see Figure 5.1 for a visual justification). Thus, they can be directly used for obtaining the
BR estimates using already implemented software, without the danger of error messages.

The general algorithm is given in Figure 5.2. The algorithm is given in a fairly general
form and can be used for any choice of link function given that the derived pseudo-data
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Figure 5.1: Adjustment functions aR(π) and aT(π) for the logit, probit, c-log-log and log-log links against π ∈ (0, 1).
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representation satisfies 0 ≤ aR(π) ≤ aT(π). In the initialization part (part A), we adjust
the actual responses and the actual totals by appending to them 1/2 and 1, respectively, so
that we eliminate the possibility of infinite ML estimates. Note that in the main iteration
(part B, step ii)) we re-adjust the reported working weights w∗

r,(j) to wr,(j) so that they
agree with the actual totals. In this way it is ensured that the correct leverages are used.

As already mentioned in Section 3.5, the variance-covariance matrix of the asymptotic
distribution of the BR estimator is the inverse of the Fisher information. However, extra
care is needed for the estimation of the standard errors. In order to obtain the correct
estimated standard errors, we need to repeat the adjustment of the working weights (step
B.ii)) after convergence. The estimated standard errors are then the square roots of
the diagonal elements of (XTWX)−1 where W is the diagonal matrix of the re-adjusted
weights. In this way we avoid the underestimation of the standard errors by the artificial
inflation of the binomial totals. Also, by the asymptotic normality of the BR estimator
(see Section 3.5), the BR estimates could be accompanied by the familiar Wald-type
asymptotic confidence intervals.

5.2.4 Empirical studies

5.2.4.1 Finiteness and shrinkage towards the origin

In order to assess the properties of the BR estimator in the case of binomial-response GLMs
with non-canonical links, we proceed to a complete enumeration study based on the same
design as the study conducted in Subsection 4.2.3.1. For the illustration of the finiteness
of the BR estimates, we consider again two cross-classified two-level factors C1 and C2,
and independent realizations of binomial random variables at each combination of levels
(covariate settings) of C1, C2 with totals m1, m2, m3, m4, respectively (see Table 4.1).
We set m1 = m2 = m3 = m4 = 2 and consider models with linear predictors of the form

ηr = α+ βxr1 + γxr2 (r = 1, . . . , 4) , (5.7)

where xr1 is equal to 1 if C1 = II and 0 else and xr2 is 1 if C2 = B and 0 else. For every pos-
sible data configuration with the above row totals, Table C.2 , Table C.3 and Table C.4 in
Appendix C give the ML estimates, the bias-corrected (BC) estimates (Cordeiro & McCul-
lagh, 1991) and the BR estimates for the probit, c-log-log and log-log links, respectively.
The finiteness of the BR estimates is apparent since, in contrast to BC and and ML, they
exist in all cases. In Subsection 4.2.3.1, Table 4.2 was constructed by formal arguments
relating to the values of the sufficient statistics for the parameters of the logistic regression
model. Those arguments do not apply for models with non-canonical link because such
models are curved families and consequently the sufficient statistic has different dimen-
sion than the natural parameter (see Cox & Hinkley, 1974, Example 2.20). However, it is
worth noting that for the three link functions we considered, infinite ML estimates occur
for and only for the data configurations in Table 4.2. We have as yet not developed formal
arguments explaining this behaviour, but according to further empirical evidence (not re-
ported here) it is also noted for more general designs. A candidate starting point towards
the formalization is that the theorems in Albert & Anderson (1984) and Santner & Duffy
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Figure 5.2: Algorithm for obtaining the bias-reduced estimates for binomial-response models, using
pseudo-data representations along with already implemented ML fitting procedures.

SCOPE:

◮ Binary response GLMs with link function g(.) and parameter vector β = (β1, . . . , βn).

REQUIRES:

◮ An already implemented ML fitting procedure for such models.

INPUT:

◮ Observed response vector y = (y1, . . . , yn)T ,

◮ binomial totals m = (m1, . . . , mn)T ,

◮ the n × p design matrix X,

◮ other options for the implemented ML fitting procedure,

◮ tolerance ǫ > 0 for the stopping criterion.

OUTPUT:
The bias-reduced estimates for β using modifications based on the Fisher information.

A. INITIALIZATION: (0-th iteration)

i) Set j = 0.

ii) Set y∗

r,(0) = yr + 1/2 and m∗

r,(0) = mr + 1, r = 1, . . . , n. a

iii) Fit y∗

(0) ∼ X using totals m∗

(0) and link g(.).

B. MAIN ITERATION ((j + 1)-th iteration) :

i) From the previous iteration get

• pseudo-totals m∗

r,(j), r = 1, . . . , n,

• fitted probabilities πr,(j), r = 1, . . . , n,

• modified working weights w∗

r,(j), r = 1, . . . , n,

• estimated parameters βt,(j) , t = 1, . . . , p.

ii) Set wr,(j) = w∗

r,(j)mr/m∗

r,(j), r = 1, . . . , n.

iii) Set H(j) = X(XT W(j)X)−1XT W(j).
b

iv) Set

• y∗

r,(j+1) = yr + hr,(j)aR(πr,(j))/2,

• m∗

r,(j+1) = mr + hr,(j)aT(πr,(j))/2, r = 1, . . . , n. c

v) Fit y∗

(j+1) ∼ X using totals m∗

(j+1), link g(.) and starting values β(j).

vi) Set j = j + 1.

vii) Repeat until either
a)

Pp
t=1 |βt,(j+1) − βt,(j)| < ǫ, ǫ > 0,

or alternatively
b)

Pp
t=1 |U

∗

t (β(j+1))| < ǫ, ǫ > 0

aFor a quantity Q, Q(c) denotes the value of Q evaluated at the c-th iteration.
bW(j) = diag{wr,(j), r = 1, . . . , n}.
chr,(j) is the r-th diagonal element of H(j).
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(1986) could be extended to cover more general link functions than the logistic since, given
their monotonicity, they result in similar simple discrimination rules: “for r = 1, . . . , n,
the r-th observation is assigned to the group of successes if η̂r > g(0.5), where g(.) is the
link function and η̂r is the linear predictor ηr evaluated at the ML estimates for β and γ”.

For the assessment of the nature of the apparent shrinkage of the BR estimates in
Table C.2, C.3 and C.4, we proceed to a larger complete enumeration study on the same
contingency table, increasing the row totals tom1 = m2 = m3 = m4 = 4. We consider only
the non-separated datasets. Our main tools are the plots of the fitted probabilities π̂ML

that correspond to the ML estimates, against the fitted probabilities π̂BR that correspond
to the BR estimates. For any configuration of counts there are four fitted probabilities,
one for each covariate setting in Table 4.1. However, for each link function, the four plots
that result from the complete enumeration are identical. The reason is that for any given
configuration of counts of successes we also consider the configurations resulting from the
4! possible permutations of these counts on the covariate settings. Thus, in Figure 5.3
we present 4 and not 16 plots. If there were no apparent shrinkage effect then we would
expect the points on the plots to lie on a 45o line. Shrinkage is identified if there is a single
point of the form (c, c), c ∈ (0, 1), for which the points (π̂BR, π̂ML) fall above the 45o line
if π̂BR > c and below it for π̂BR < c.

Table 5.3: The probability towards which π̂BR shrinks for the logit, probit, c-log-log and log-log
links.

Link P (Zl < 0)

logit exp(0)/(1 + exp(0)) = 0.5
probit Φ(0) = 0.5
c-log-log 1 − exp(− exp(0)) ≃ 0.632
log-log exp(− exp(0)) ≃ 0.368

As is demonstrated in Figure 5.3, π̂BR shrinks towards P (Zl < 0) where Zl is some
latent random variable following the distribution imposed by the link function (or, equiv-
alently, the distribution function of Zl is the inverse link function; see Table 5.3). Con-
sequently, the BR estimates shrink towards the origin on the scale of the link function.
For the logit link this has already been formally proved in Section 4.2. For the remaining
links, this agrees with the results for binary-response GLMs in Cordeiro & McCullagh
(1991), where it is shown that the first-order bias vector is approximately collinear with
the parameter vector (see Section 4.2 for a more analytic description of this result).

The case of log-log linked models will not be pursued any further, because the estima-
tors for its parameters have identical bias, variance and mean squared error (MSE) with
the estimators of the parameters of the c-log-log model. This is a direct consequence of
the fact that c-log-log(π) = −log-log(1−π), or equivalently that, on the logistic scale, the
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Figure 5.3: Demonstration of shrinkage of the fitted probabilities for the logit, probit, c-log-log and
log-log links.
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log-log link function is the reflection of the c-log-log link function on the 45o line. Hence,
from now on, any comments on the behaviour of the estimators for the c-log-log link apply
for the log-log link, as well.
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5.2.4.2 A Monte Carlo simulation study: Bias reduction versus bias correction

As it has been demonstrated by the previous complete enumeration studies, the advantage
of the BR estimator over the BC estimator of Cordeiro & McCullagh (1991) is that the
latter is undefined when the ML estimates are infinite. Here, a Monte Carlo simulation
study allows the deeper comparison of the two estimators in terms of estimated bias and
estimated variance. We only consider the probit and the c-log-log links. The case of
logit links has been theoretically covered in Chapter 4, and extensive empirical results are
already available in Heinze & Schemper (2002) and Bull et al. (2002).

Working on the two-way layout with a binomial response (table (Table 4.1)), we con-
sider models with linear predictors of the form (5.7) and we investigate the BR and BC es-
timators under several different settings for the true parameter vector (α0, β0, γ0). Among
the wide range of true parameter settings we have considered, we present and comment
on the results for the settings (0,−0.5, 0.5), (0,−2, 1.7) and (−1, 0, 1.3), which from now
on they will be referred to as ‘A’, ‘B’ and ‘C’, respectively. These were found to be good
representatives for the illustration of the general behaviour of the estimators. Setting A
is moderate for both the c-log-log and the probit link and assumes same probability for
the first and fourth covariate setting (see Table 5.4). The parameter setting B has more
extreme effects on the scale of each link function, implying very large and very small
probabilities for the second and third covariate settings, respectively. The last parameter
setting describes a moderate situation where the second and the fourth covariate settings
are favoured in terms of probability.

Table 5.4: Implied probabilities by the probit and c-log-log links, for the parameter settings A, B
and C

Link Parameter setting
Implied probabilities

π1 π2 π3 π4

probit
A 0.5 0.691 0.309 0.5
B 0.5 0.955 0.023 0.382
C 0.159 0.618 0.159 0.618

c-log-log
A 0.632 0.808 0.455 0.632
B 0.632 0.996 0.127 0.523
C 0.308 0.741 0.308 0.741

Under each parameter setting, we simulate 20000 samples for the probit model and
20000 samples for c-log-log model. The whole set of simulations is performed once for row
totals m = m1 = m2 = m3 = m4 = 5 and once for row totals m = m1 = m2 = m3 =
m4 = 25, so that we can have an indication on the effect of the sample size. For each
simulated sample, the ML, BR and BC estimates are obtained, and after the removal of
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separated cases, we calculate the estimated bias, estimated variance and estimated MSE
corresponding to each estimator. For the BR estimates, we use algorithm 5.2 with the
stopping criterion B.vii).a) that monitors the change on the estimated values between
successive iterations. The tolerance we set is ǫ = 10−10. In this way, the error from the
numerical approximation of the roots of the modified score function is negligible compared
to the bias and the variance of the BR estimator. For all of the simulated samples the
algorithm converged after a few iterations (on average around 11 iterations for the probit
link and around 14 for the c-log-log link), and the absolute value of the modified score
function for β evaluated at the estimated value was at most of order 10−11. Despite the fact
that the removal of separated samples favours the ML and BC estimators, it is necessary
in order to obtain finite estimated biases, variances and MSEs for them. So the following
results and conclusions are conditional on the finiteness of the ML estimates.

Table 5.5 and Table 5.6 present the results of the empirical study. The following
remarks can be made.

Remark 1. First, note that in most of the cases for m = 5 and parameter settings
B and C, the estimated biases of the ML estimator appear to be considerably smaller
than those of the BR and BC estimators. This is just a side-effect of the exclusion of the
separated datasets from the calculations, and is also related to the — necessary for bias
correction/reduction — shrinkage of the estimates towards the origin. The inclusion of
only un-separated datasets corresponds to averaging over the part of the sample space in
where the ML estimates are finite. Thus, we systematically exclude the long right (or left,
depending on the direction of the true effects) tail of the distribution of the ML estimator.
Further, a comparison of the corresponding estimated biases for m = 25, demonstrates
that the phenomenon becomes less apparent as m increases. The reason is that as m
increases, the probability of separation decreases, but at the same time, un-separated
samples that allow for stronger estimated effects on the scale of each link function, are
included in the study. Note that, when we include the separated samples in the study (see
bracketed quantities in Table 5.5 and Table 5.6), the estimated biases for the BR estimator
are smaller than the estimated biases based only on the un-separated cases. The reason
is that we take into account values from the tails of the distribution of the BR estimator
that are still finite but away from zero.

Remark 2. For the majority of the cases in Table 5.5 and Table 5.6, the BC estimator
has smaller estimated variance than the BR estimator. However, a parallel comparison of
the corresponding estimated biases and MSEs, reveals that the BC estimator has larger
bias than the BR estimator, and in fact so large that in most cases the favourable picture for
its estimated variance is reversed for the estimated MSE. In contrast to the BC estimator,
the BR estimator seems to behave better in terms of estimated MSE, preserving a balance
between estimated bias and estimated variance. The same behaviour is also noted for
logistic regressions in both Heinze & Schemper (2002) and Bull et al. (2002).

Remark 3. For the c-log-log link (Table 5.6) and the parameter setting C, both the
BR and BC estimators seem to correct the bias of the ML estimator beyond the true value.
Especially for m = 5, the overcorrection is more severe for the BC estimator which, on
parameter γ (true value 1.3) and to three decimal places, has estimated bias −0.211 , in
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contrast to −0.140 of the BR estimator. The corresponding estimated variances are 0.288
and 0.338, respectively. The estimated bias and variance of the ML estimator for γ are
0.094 and 0.530, respectively. The same situation, but in smaller scales, is noted for the
moderate parameter setting A, both for the probit and the c-log-log link. In more extreme
settings such overcorrection when combined with the systematically smaller estimated
variance of the BC estimator could raise serious concerns about its overall performance,
since the estimator illustrates small variance but around the wrong value.

Remark 4. All of the above conclusions are conditional on the existence of the ML
estimates. Thus, the tails of the distribution of the BR estimator were systematically
excluded, not allowing it to take large finite values. In this way the shrinkage properties of
the BR estimator seriously affected the results, and in several cases the BR estimator had
artificially large estimated biases and small estimated variances. The bracketed quantities
in Table 5.5 and Table 5.6 illustrate how this situation is improved when we include all
the datasets in the study so that the estimated biases, variances and MSEs refer to the
full distribution of the BR estimator. Histograms and kernel density estimates allow the
visualization of the effect of conditioning. As an example, we consider the BR estimates
of β for the probit link (Table 5.5) and under the parameter setting B. This setting has
β0 = −2, which is the largest assumed effect we considered in the study, and so the effect
of conditioning is most apparent.

Figure 5.4 shows the histogams for the BR estimator of β. For m = 5 and when only
un-separated samples are included in the study, the true value β0 is only covered by the tail
of the distribution and so the estimated bias is large. When all samples are included, −2
is much closer to the mean of the distribution. For m = 25 (the two plots in the bottom),
separation is rarer (3636 separated samples out of 20000 simulated) and both histograms
look similar, with the one based on all samples having slightly longer left tail on account
of the inclusion of extreme negative estimated effects. The histograms for the c-log-log
link (the corresponding plots are not shown here) illustrate the same behaviour but with
longer left tails because the asymmetry of the c-log-log link allows it to accommodate larger
effects without resulting in separation. This discussion is supported by the corresponding
results in Table 5.5 and Table 5.6.

In conclusion, even if we exclude the part of the sample space that the ML estimator
takes infinite values, the BR estimator has overall smaller estimated bias than the BC
estimator. Conditional on the existence of the ML estimates, for small sample sizes and
extreme parameter settings, the BC estimator has the tendency to overcorrect the bias
beyond the true value, and at the same time it has small variance. This could be dangerous
since the estimator gets less dispersed but around the wrong value. On the other hand,
as the Monte Carlo study suggests, the BR estimator illustrates smaller overcorrection
and despite being conservative on its variance, it preserves a lower MSE than the BC
estimator.

As the sample size increases, the differences between the ML, the BC and the BR
estimator diminish, and application of the bias-reduction method bears only the small
extra cost in implementation and computation.
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Table 5.5: Probit link. Estimated bias, estimated variance and estimated MSE to three decimal places, excluding the separated samples.

(α0, β0, γ0)
Row Separated

Method
Estimated bias Estimated variance Estimated MSE

totals samples α β γ α β γ α β γ

A. (0,−0.5, 0.5)

m = 5 842

ML 0.011 −0.047 0.034 0.306 0.395 0.392 0.306 0.397 0.393
BC 0.009 0.047 −0.058 0.210 0.264 0.261 0.210 0.266 0.265

BR
0.009 0.032 −0.044 0.223 0.284 0.281 0.224 0.285 0.283
[0.006] [−0.008] [−0.001] [0.248] [0.343] [0.341] [0.248] [0.343] [0.341]

m = 25 0

ML −0.001 −0.014 0.014 0.051 0.070 0.070 0.051 0.071 0.070
BC −0.001 0.000 0.001 0.048 0.066 0.066 0.048 0.066 0.066

BR
−0.001 0.000 0.001 0.048 0.066 0.066 0.048 0.066 0.066
[−0.001] [0.000] [0.001] [0.048] [0.066] [0.066] [0.048] [0.066] [0.066]

B. (0,−2, 1.7)

m = 5 14620

ML −0.017 0.562 −0.536 0.297 0.210 0.227 0.297 0.526 0.515
BC −0.004 0.867 −0.793 0.189 0.131 0.143 0.189 0.882 0.772

BR
−0.005 0.811 −0.746 0.206 0.145 0.156 0.206 0.802 0.713
[0.004] [0.271] [−0.267] [0.288] [0.299] [0.299] [0.288] [0.373] [0.371]

m = 25 3636

ML −0.004 0.004 −0.013 0.060 0.098 0.096 0.060 0.099 0.096
BC −0.001 0.150 −0.149 0.056 0.072 0.070 0.056 0.094 0.092

BR
−0.001 0.133 −0.133 0.056 0.076 0.075 0.056 0.094 0.092
[0.001] [0.008] [−0.008] [0.057] [0.139] [0.138] [0.057] [0.140] [0.138]

C. (−1, 0, 1.3)

m = 5 4511

ML 0.044 −0.002 −0.037 0.249 0.414 0.308 0.251 0.414 0.310
BC 0.228 −0.002 −0.274 0.143 0.254 0.188 0.196 0.254 0.263

BR
0.196 −0.002 −0.232 0.160 0.277 0.210 0.199 0.277 0.264
[0.011] [−0.006] [−0.009] [0.312] [0.395] [0.382] [0.312] [0.395] [0.382]

m = 25 5

ML −0.036 0.002 0.041 0.074 0.083 0.088 0.075 0.083 0.090
BC 0.001 0.002 −0.004 0.065 0.077 0.079 0.065 0.077 0.079

BR
0.000 0.002 −0.002 0.066 0.077 0.079 0.066 0.077 0.079

[−0.001] [0.002] [−0.002] [0.066] [0.077] [0.080] [0.066] [0.077] [0.080]

The bracketed ([.]) quantities refer to the corresponding estimated quantities for the BR estimator, when all the samples are included.
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Table 5.6: C-log-log link. Estimated bias, estimated variance and estimated MSE to three decimal places, excluding the separated samples.

(α0, β0, γ0)
Row Separated

Method
Estimated bias Estimated variance Estimated MSE

totals samples α β γ α β γ α β γ

A. (0,−0.5, 0.5)

m = 5 1728

ML −0.022 −0.069 0.069 0.330 0.488 0.485 0.331 0.493 0.489
BC −0.043 0.075 −0.076 0.211 0.264 0.263 0.213 0.270 0.269

BR
−0.034 0.038 −0.039 0.230 0.309 0.307 0.232 0.311 0.309
[−0.003] [−0.006] [0.004] [0.272] [0.373] [0.368] [0.272] [0.373] [0.368]

m = 25 0

ML 0.001 −0.018 0.018 0.056 0.078 0.078 0.056 0.079 0.079
BC 0.000 −0.001 0.002 0.053 0.073 0.073 0.053 0.073 0.073

BR
0.000 −0.002 0.002 0.053 0.073 0.073 0.053 0.073 0.073
[0.000] [−0.002] [0.002] [0.053] [0.073] [0.073] [0.053] [0.073] [0.073]

B. (0,−2, 1.7)

m = 5 11199

ML 0.010 0.321 −0.274 0.243 0.272 0.269 0.243 0.375 0.345
BC −0.077 0.970 −0.886 0.163 0.192 0.176 0.168 1.132 0.960

BR
−0.041 0.740 −0.663 0.172 0.182 0.166 0.174 0.730 0.605
[−0.064] [0.411] [−0.434] [0.311] [0.385] [0.348] [0.315] [0.554] [0.536]

m = 25 633

ML 0.025 −0.197 0.191 0.066 0.268 0.269 0.067 0.307 0.306
BC 0.001 0.096 −0.096 0.063 0.174 0.179 0.063 0.183 0.188

BR
−0.006 0.089 −0.090 0.063 0.154 0.156 0.063 0.162 0.164
[−0.006] [0.034] [−0.035] [0.063] [0.257] [0.257] [0.064] [0.258] [0.258]

C. (−1, 0, 1.3)

m = 5 2383

ML −0.084 −0.001 0.094 0.500 0.566 0.530 0.507 0.566 0.538
BC 0.114 −0.002 −0.211 0.286 0.287 0.288 0.300 0.287 0.332

BR
0.078 −0.001 −0.140 0.327 0.351 0.338 0.333 0.351 0.358

[−0.004] [−0.004] [0.001] [0.459] [0.424] [0.501] [0.459] [0.424] [0.501]

m = 25 0

ML −0.027 0.005 0.035 0.094 0.092 0.106 0.095 0.092 0.107
BC 0.003 0.005 −0.005 0.087 0.085 0.098 0.087 0.085 0.098

BR
0.002 0.005 −0.004 0.088 0.085 0.098 0.088 0.085 0.098
[0.002] [0.005] [−0.004] [0.088] [0.085] [0.098] [0.088] [0.085] [0.098]

The bracketed ([.]) quantities refer to the corresponding estimated quantities for the BR estimator, when all the samples are included.
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Figure 5.4: Histograms of the values of the BR estimator of β (β̂BR), under the parameter setting
B, when only the un-separated samples are included in the study and when all the samples are
included.
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5.2.5 Do the fitted probabilities always shrink towards the point where the Jeffreys
prior is maximized?

The general answer is no. The point where the Jeffreys prior for binary response GLMs
is maximized is exactly the same point where the working weights are simultaneously
maximized. This is directly proved if we use the working weights that correspond to any
given model and follow exactly the same steps as in the proof of Theorem 4.2.2.

In Figure 5.5 we plot the working weights divided by the binomial totals for the logistic,
probit, c-log-log and log-log links and indicate their maxima. For the logistic and probit
link the working weight is maximized for π = 0.5 which is the same point towards which
π̂BR shrinks. However, for the c-log-log and log-log links the maxima are attained at
different probabilities to the ones indicated in Table 5.3.

Given that the Jeffreys prior is concave, if we used it to penalize the likelihood and ob-
tained the maximum penalized likelihood (MPL) estimates, the fitted probabilities would
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Figure 5.5: Average working weight w/m (see Table 3.2) against the probability of success π for
the logit, probit, c-log-log and log-log links.
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shrink towards the points indicated in Figure 5.5. Moreover, as with the BR estimates,
the MPL estimates are always finite and this can be shown by the steps in the proof of
Theorem 4.2.1, if the logistic working weights are replaced with the working weights that
correspond to each link function.

Because of the finiteness and shrinkage properties of the MPL estimator, it appears
that the latter could also yield an improvement over ML. However, the leading term in the
expansion of the bias of the MPL estimator is of order O(m−1) and thus, asymptotically, it
cannot outperform the BR estimator in terms of first-order bias. Despite the fact that the
penalization of the likelihood by the Jeffreys prior in curved families is not supported by
any bias-related asymptotic results, the finiteness and shrinkage properties of the resultant
estimator motivate its further comparison with the BR estimator. This is intended for
further work and will not be pursued here.
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5.2.6 Discussion and further work

It has been shown that the implementation of the bias-reduction method for binomial-
response models can be easily performed by the use of available ML estimation software
through pseudo-data representations. The estimation bears only a small extra cost in
computation when compared to ML. Further, it has been demonstrated that the finiteness
and shrinkage properties of the BR estimator extend beyond the case of canonical-links.

Certainly, further work is needed on the formalization of the finiteness and shrinkage
properties of the bias-reduced estimator. However, in addition to the presented results in
this section, we have not encountered empirical results that contradict these properties
and it seems that the superiority of the BR estimator over the ML and BC estimators
extends beyond canonical links.

As already mentioned in Subsection 5.2.3, since the BR estimator has asymptotically
a normal distribution (see Section 3.5), the usual Wald-type intervals could be used for
statements on the uncertainty of the obtained estimates. However, such intervals would
illustrate poor coverage properties and in many cases the coverage probabilities would be
far below the nominal level. For logistic regressions (see Section 4.4), confidence intervals
based on both the likelihood ratio and penalized-likelihood ratio were constructed, further
improving the suggestions of Heinze & Schemper (2002) and Bull et al. (2007). However,
as Theorem 3.7.1 shows, there is no penalized likelihood corresponding to non-canonical
models within the class of GLMs. Thus, for the BR estimates, there is no argument
motivating the use of confidence intervals based on penalization of the likelihood by Jeffreys
prior. In this perspective, it could be argued that the MPL estimator of Subsection 5.2.5
has an advantage over the BR estimator, since, as is done in the case of logistic regression,
its definition motivates the use of such confidence intervals. Lastly, as in the case of logistic
regression, a formal framework for measuring the goodness of fit is still lacking. All of the
aforementioned issues could form subjects for future work in the area.

5.3 Non-linear Rasch models

In this section, we illustrate how the properties of the bias-reduction method for logis-
tic regression extend to the case of the non-linear predictor “2-parameter logistic” (2PL)
model (Birnbaum, 1968), well known in the item response theory literature. It is a gen-
eralized non-linear model in canonical parameterization (see Chapter 2). Similarly to
logistic regression, this model has infinite ML estimates with positive probability and the
ML estimator exhibits considerable bias under deviations from the origin of the logistic
scale. Apart from its methodological importance in item response theory, our interest on
2PL models stems from the special form of the predictor which despite being a non-linear
function of the parameters, is connected with the well-studied — in Chapter 4 — case of
linear predictors.
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5.3.1 The 1PL and 2PL models, and partial linearity

The well-known in item response theory Rasch (or 1PL) model has the simple, linear on
the logistic scale, form

log
πrs

1 − πrs
= ηrs = αr + γs , (5.8)

with r = 1, . . . , N and s = 1, . . . , n. Here πrs can be thought as the probability that
the person s succeeds in item r of an achievement test and αr, γs are unknown fixed
parameters. In the framework of item response theory, parameter γs is interpreted as
a measure of the ability of person s when taking an achievement test and αr (or −αr)
corresponds to a measure of the ease (or difficulty) of the item r of the test.

A much-used extension is the 2PL model that has the form

log
πrs

1 − πrs
= η̃rs = αr + βrγs , (5.9)

where αr, βr and γs are unknown fixed parameters. The parameter βr is usually referred
to as the “discrimination parameter” of item r. The larger the discrimination or slope
parameter, the steeper is the item response function (IRF), which is the curve that maps
γs to πrs. In contrast to 1PL, the log-odds ηrs is assumed to be a non-linear function of
the parameters. Specifically, ηrs is a ‘partially-linear’ combination of parameters; if we fix
either βr’s or γs’s the result is a representation of the 1PL or a simple logistic regression
model, respectively.

These models can be approached from three different perspectives: i) parameters of
interest are only person-specific, so that all the item parameters are nuisances; ii) pa-
rameters of interest are item-specific, and so the person parameters are nuisances (see
Hoijtink & Boomsma, 1995; Molenaar, 1995, respectively, for elegant reviews on these two
perspectives for the 1PL model); iii) all parameters are of interest. Further, depending on
the perspective, they can be fitted using either ML for all the parameters (joint ML) or
conditional ML or marginal ML. Tuerlinckx et al. (2005) gives a review of these methods.
Here we only consider joint ML.

Both models as given above are overparameterized and we have to pose certain restric-
tions on the parameter space in order to be able to identify the inferences made based on
the fitted model. For example, in the case of the 2PL model the log-odds of success is un-
changed if we multiply the discrimination parameter by a constant c and divide the ability
parameter by c. Various constraints can be used for achieving identifiability in the 2PL
models, such as, fixing the abilities of two persons, forcing the abilities to have zero mean
and variance one, etc. Actually, there is an infinity of such choices and all are equivalent in
terms of the fitted probabilities. However, the choice of an appropriate set of constraints is
always discussed in item response theory literature (see, for example, the aforementioned
studies in Hoijtink & Boomsma, 1995; Molenaar, 1995). 1 For the sake of generality, the

1An alternative way of fitting and inference on the fitted parameters is via generalized inverses and quasi-
standard errors (see Firth, 2003; Firth & De Menezes, 2004), where no restrictions need to be imposed on
the parameters. These methods are implemented in the gnm library in R language (R Development Core
Team, 2007).
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modified score functions are given for all the parameters involved in the model. Then, any
restrictions on the parameter space are directly passed as constraints to the optimization
problem of finding the roots of the system of the modified score equations.

5.3.2 The earlier work of Warm (1989)

Four years earlier than Firth (1993), Warm (1989) working on a item response theory
model with a single person parameter derived the bias-reduction method using modifi-
cations based on the expected information. The motivation for the derivation was the
reduction of the bias of the estimator. The model considered in Warm (1989) refers only
to a single person and has the form

πr = cr +
1 − cr

1 + exp(−1.7ar(θ − br))
(r = 1, . . . ,N) ,

where πr is the probability that the person succeeds on item r, ar, br and cr are some
item specific constants that are known from the context and θ is the unknown person
parameter to be estimated. The starting point of Warm (1989) is a conjecture of the form
the modified scores should have, and he succeeds in proving that a first-order unbiased
estimator of θ can be obtained by locating the roots of

U∗(θ) = U(θ) +
E
[

U(θ)3
]

− E [U(θ)I(θ)]

F (θ)
,

where U(θ), F (θ), I(θ) are the ordinary score, the Fisher information and the observed in-
formation on θ, respectively (see Warm (1989) for their explicit forms). This is exactly the
modified score function that is derived in Section 3.3. Moreover Warm (1989) recognises
that the BR estimates are always finite even in cases where the ML estimates are infinite.
The term “weighted likelihood estimation” is used and it is noted that when cr = 0 the
modified scores correspond to penalization (or “weighting” in Warm (1989) terminology)
of the ordinary likelihood by

√

F (θ), the Jeffreys prior. This latter case when extended
to more than one person is exactly the application of the bias-reduction method to the
1PL model that we consider in the following subsection.

5.3.3 Bias reduction for the 1PL and 2PL models

Consider realizations yrs of independent binomial random variables Yrs with totals mrs,
r = 1, . . . , N , s = 1, . . . , n. Let δ = (αT , γT )T be the (N + n)-vector of parameters of
the 1PL model (5.8). This is a logistic regression model and directly from the results in
Section 4.2 the modified scores take the form

U (1PL)

t =
n
∑

r=1

(

yrs +
1

2
hrss − (mrs + hrss)πrs

)

zrst (t = 1, . . . ,N + n) . (5.10)

In the above expression hrss is the s-th diagonal element of the n × n projection matrix
Hr = ZrF

−1ZT
r Σr where F =

∑

r Z
T
r ΣrZr is the Fisher information on δ, Zr is the
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n× (N + n) matrix with elements zrst = ∂ηrs/∂δt which do not depend on δ, and Σr is a
diagonal matrix with s-th diagonal element κ2,rs = Var(Yrs) = mrsπrs(1 − πrs).

Now let δ̃ = (αT , βT , γT )T be the (2N + n)-vector of parameters of the 2PL model
(5.9). By (3.21) and using the modifications based on the Fisher information, the modified
score functions have the form

U∗
t = Ut +

1

2

N
∑

r=1

n
∑

s=1

h̃rss
κ3,rs

κ2,rs
z̃rst (5.11)

+
1

2

N
∑

r=1

n
∑

s=1

κ2,rs trace
{

F̃−1D2
(

η̃rs; δ̃
)}

z̃rst (t = 1, . . . , 2N + n) .

Here, h̃rss has the same interpretation as does hrss in the 1PL model, with the difference
that Zr is replaced by Z̃r, and κ3,rs = mrsπrs(1 − πrs)(1 − 2πrs) is the third cumulant
of Yrs, (r = 1, . . . , N ; s = 1, . . . , n). The matrix Z̃r is the n × (2N + n) matrix of first
derivatives of η̃r = (η̃r1, . . . , η̃rn) with respect to δ̃ and has components z̃rst = ∂η̃rs/∂δ̃t
which in this case depend on δ̃. Further, F̃ =

∑

r Z̃
T
r ΣrZ̃r is the Fisher information on δ̃

and D2
(

η̃rs; δ̃
)

is the (2N + n)×(2N + n) matrix of second derivatives of η̃rs with respect

to the parameter vector δ̃. By the results in Chapter 2, the ordinary scores Ut for the 2PL
model have the form

Ut =

N
∑

r=1

n
∑

s=1

(yrs −mrsπrs) z̃rst (t = 1, . . . , p)

and so (5.11) could be written in a more condensed from as

U∗
t =

N
∑

r=1

n
∑

s=1

(

yrs +
1

2
h̃rss

κ3,rs

κ2,rs
+

1

2
κ2,rs trace

{

F̃−1D2
(

η̃rs; δ̃
)}

−mrsπrs

)

z̃rst . (5.12)

At first glance the above expression might seem unwieldy, but the special form of the
predictor of the 2PL model (5.9) suggests that there is much structure to be exploited in
the quantities involved. First, note that κ3,rs/κ2,rs = 1 − 2πrs. In addition, by the form

of the predictor η̃rs and the definition of D2
(

η̃rs; δ̃
)

(see Theorem B.1.2 in Appendix B)

we have that

D2
(

η̃rs; δ̃
)

=







Dα,α
rs Dα,β

rs Dα,γ
rs

(Dα,β
rs )T Dβ,β

rs Dβ,γ
rs

(Dα,γ
rs )T (Dβ,γ

rs )T Dγ,γ
rs






=





0N×N 0N×N 0N×n

0N×N 0N×N Dβ,γ
rs

0n×N (Dβ,γ
rs )T 0n×n



 ,

with r = 1, . . . , N and s = 1, . . . , n, where 0n×N is the n × N matrix of zeros and Dβ,γ
rs

denotes the N × n matrix with elements ∂2η̃rs/∂βu∂γw (u = 1, . . . ,N ; w = 1, . . . , n).

The direct calculation of these second derivatives gives that Dβ,γ
r,s is a matrix of zeros with

only its (r, s)-th element equal to 1. Thus, by the symmetry of F̃−1,

trace
{

F̃−1D2
(

η̃rs; δ̃
)}

= 2crs ,
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where crs is the (r, s)-th component of the N × n sub-matrix of F̃−1 with rows referring
to β and columns referring to γ. In other words, crs is the asymptotic covariance of the
ML (or BR) estimators of βr and γs.

Substitution of the above results into (5.12) gives the modified scores for the 2PL
model in the elegant form

U (2PL)

t =

N
∑

r=1

n
∑

s=1

(

yrs +
1

2
h̃rss − (mrs + h̃rss)πrs + crsκ2,rs

)

z̃rst , (5.13)

for t = 1, . . . , 2N + n.

5.3.4 Comparison of U
(1PL)

t and U
(2PL)

t

The term crsκ2,rs in U (2PL)

t reflects the aforementioned partial linearity of the predictor;
fixing either β’s or γ’s, the 2PL model reduces to a simple logistic regression model and the
extra term disappears. For example, if we fix βr’s, z̃rst does not depend on the parameters
and crsκ2,rs = 0, retrieving the form U (1PL)

t .

5.3.5 Obtaining the bias-reduced estimates

The form of the modified scores (5.13) for the 2PL model suggests a pseudo-data repre-
sentation for the responses and the totals, of the form

Pseudo-successes y∗rs = yrs +
1

2
h̃rss +mrscrsπrs(1 − πrs) ,

Pseudo-totals m∗
rs = mrs + h̃rss ,

(5.14)

with r = 1, . . . , n and s = 1, . . . ,N . If we replace the actual responses and totals with
their pseudo counterparts in the expression for the usual IWLS working variates for ML
estimation and iterate, the BR estimates are obtained at convergence.

However, as in the case of binary response GLMs there is an alternative way of ob-
taining the BR estimates. Note that the representation (5.14) has the same undesirable
behaviour as the crude pseudo-responses presented in Table 3.2 for GLMs; the value of the
pseudo-response might violate the range of the original response and it is not necessarily
smaller than the value of the pseudo-totals. As in the previous section for GLMs, if we
re-express (5.14) so that 0 < y∗rs < m∗

rs, then already-implemented software for fitting
2PL models via joint ML could be used in order to obtain the BR estimates. A simple
re-expression of (5.14) gives

Pseudo-successes y∗rs = yrs +
1

2
h̃rss +mrscrsπrsI(crs ≥ 0) ,

Pseudo-totals m∗
rs = mrs + h̃rss +mrscrs(πrs − I(crs < 0)) ,

(5.15)

Now, algorithm 5.2 could be used for the implementation of the bias-reduction method
with the following minor adjustments. We replace the subscript r with the subscripts rs
and the pseudo-data specification in step B.iv) is replaced by (5.15), where the pseudo-
specifications are modified by the addition of the subscript (j + 1) to the quantities of
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the left hand sides and (j) to the quantities of the right. In order to obtain the correct
estimated standard errors, we should adjust the resultant modified working weights (bi-
nomial variances here) after convergence, precisely in the same way as is the description
of algorithm (5.2) in the previous section.

An issue that could arise in fitting these models relates to the choice of starting values
for the iterative process. Even in the case of ML estimation their choice is crucial because
the log-likelihood surface exhibits flat regions away from the maximum. Good starting
values can be provided through the residSVD function of the gnm library in the R language
(R Development Core Team, 2007) which decomposes appropriately (in an item-person
way, here) the residuals of a simpler model using a singular value decomposition. We
recommend these starting values to be used for fitting the model in the initialization part
of algorithm 5.2 (step A.iii)).

5.3.6 Finiteness of the bias-reduced estimator

The ML estimates for both 1PL and 2PL models can take infinite values, for example, when
the persons are perfectly separated with respect to a specific item. In practice, this causes
fitting procedures to fail to converge and the standard ML asymptotic theory cannot be
applied, since the ML estimate is located on the boundary of the parameter space. As in
the case of logistic regression (Lesaffre & Albert, 1989, §4), fitted probabilities very close
to 0 or 1 and/or very large estimated standard errors during the fitting procedure reflect
well such situations. In contrast, from our experience with various simulated datasets the
BR estimates are finite even when the ML estimates are infinite. This is also illustrated
in the results of the following empirical study.

5.3.7 Issues and considerations

In the derivation of the modified scores we considered the case where instead of a single
Bernoulli trial we allow more than one independent trial at each person-item combination.

The more usual asymptotic framework that is used in item response theory for these
models uses the persons as the units of information (Molenaar, 1995, §3.2). In that case,
the joint ML estimator is inconsistent since the dimension of the parameter space increases
with the number of persons that are included in the study.

In order to avoid the inconsistency of the ML estimator we assume that both n and
N are fixed so that the information on the parameters grows with the totals mrs of each
person-item combination. This is a restrictive assumption for these models but it will
enable us to perform a small empirical study for the comparison of the BR and the ML
estimator under a common basis. The form of the modified scores is not affected by
these considerations. However, outside this restrictive assumption, the BR estimator is
inconsistent since there is a O(1) term in the asymptotic expansion of its bias that persists
as the number of persons increases. This situation is not considered here and is the subject
of further work.
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5.3.8 A small empirical study

Consider a 5-person (A,B,C,D,E) and 3-item (1,2,3) design, where each person replies 20
times on each item. For identifiability reasons we set the abilities γA and γE to −2 and
2, respectively. The true probabilities of positive reply for each person-item combination
are fixed as in Table 5.7 (see Table 5.8 for the corresponding parameter values).

Table 5.7: True probabilities for the simulation study for the comparison of the BR and ML esti-
mators on 2PL models.

Item 1 Item 2 Item 3

Person A 0.083 0.182 0.354
Person B 0.231 0.378 0.550
Person C 0.500 0.622 0.731
Person D 0.769 0.818 0.858
Person E 0.917 0.924 0.931

Under these probabilities, we simulate 2500 samples and for each sample we obtain
the ML and the BR estimates. In Figure 5.6, the estimated IRFs based on the BR and
the ML estimates are shown. The IRFs based on the BR estimates exhibit less variation
than the IRFs based on the ML estimates, shrinking towards the true curve. Further, note
the simulated cases of (quasi-) perfect separation of groups of persons (dark-grey curves).
The ML estimates are infinite and consequently the IRFs are steepest. In contrast, the
corresponding IRFs based on the BR estimates are slightly adjusted, thus avoiding any
singularities. As an example consider the dark-grey and dotted curves that correspond to
a separated case. The fitted probabilities for persons A and B on the first item are zero
and one. More specifically, based on ML, the fitted probabilities on item 1 to four decimal
places are (0.0000 0.1283, 0.4470, 0.7747, 1.0000) and based on BR, a clear shrinkage
towards 0.5 is noted, with fitted probabilities (0.0017, 0.1760, 0.4615, 0.7424, 0.9877) for
persons A, B, C, D, E, respectively.

In Table 5.8 we calculate the estimated biases and the estimated MSEs for the ML and
BR estimators, based on a larger simulation (104 samples) where the separated configu-
rations (162 in total) have been removed. This removal, favourable for the ML estimator,
takes place in order to enable us to report non-infinite values for the corresponding es-
timated measures of dispersion. As expected, the estimated bias of the BR estimator is
smaller. The same behaviour is noted for the estimated MSE and consequently, the BR
estimator has, also, smaller estimated variance.
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Figure 5.6: Estimated IRFs for the 3 items from a simulation study of size 2500 and true probabilities as in Table 5.7.
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Table 5.8: Estimated bias and MSE to three decimal places, based on 104 simulated samples (162
separated samples were removed).

α1 α2 α3 β1 β2 β3

True value 0 0.5 1 1.2 1 0.8

Est. Bias
ML 0.038 0.073 0.09 0.136 0.082 0.063
BR −0.009 −0.007 −0.003 0.003 −0.006 −0.001

Est. MSE
ML 0.359 0.245 0.201 0.16 0.099 0.074
BR 0.188 0.137 0.121 0.068 0.055 0.047

γB γC γD

True value −1 0 1

Est. Bias
ML −0.014 −0.022 −0.021
BR −0.004 0.008 0.01

Est. MSE
ML 0.193 0.19 0.314
BR 0.174 0.163 0.254

5.3.9 Discussion and further work

We have considered the bias-reduction method for a different asymptotic framework than
the one usually used in item response theory. However, according to the small empirical
study above, the BR estimator outperforms the ML estimator in terms of estimated bias
and estimated MSE. Furthermore, the BR estimator takes always finite values, even in
cases where the persons are completely separated for a specific item (the ML estimates are
infinite). In addition, the estimated probabilities shrink towards 0.5 when compared to
the fitted probabilities based on the ML estimates. However, statements on the shrinkage
of the estimates should be avoided in the case of 2PL models because the parameters are
related to the log-odds in a non-linear way. The only thing to be noted is that the BR
estimates are adjusted so that the estimated predictors ηrs (r = 1, . . . , n ; s = 1, . . . ,N)
shrink towards zero.

In addition to the topics outlined in Subsection 5.2.6 for future work in binomial-
response GLMs, there are more issues to deal with in item response theory models. The
main topic is dealing with the inconsistency of the estimators when the information on
the parameters grows with the number of persons. A different bias-reduction method has
to be developed, that is robust to the increase of the dimension of the parameter space,
as the number of persons increases. The target is the removal of the persistent O(1) term
in the bias expansion of the ML estimator, and the parallel construction of consistent
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estimators.
On the other hand, for conditional ML and marginal ML (Hoijtink & Boomsma, 1995;

Molenaar, 1995), the consistency of the resultant estimators is ensured because both meth-
ods assume that information on the parameters grows with the number of persons (or
items) and the parameters to be estimated are only item-specific (or person-specific), thus
assuming fixed number of items (or persons). Hence, another possible direction for further
research is the application of bias reduction to conditional and marginal ML estimation.
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Chapter 6

Further topics: Additively

modified scores

6.1 Introduction

Maximum likelihood (ML) is the dominant method of estimation in the frequentist school,
mainly because of the neat asymptotic properties of the ML estimator (asymptotic nor-
mality, asymptotic sufficiency, unbiasedness and efficiency) and further the easy imple-
mentation of fitting procedures. Given the log-concavity of the likelihood function L(β)
on some parameterization β, estimation is performed by the solution of the efficient score
equations ∇logL(β) = 0. However there are cases where the ML estimator has unde-
sirable properties. Firth (1993), motivated partly from the reduction of the bias of the
ML estimator for logistic regressions in small samples, developed a class of modifications
to the efficient scores that result in first-order (O(n−1)) unbiased estimators. As already
described in Chapter 3, the core of his work lies on an additive modification to the original
scores, that depends on the parameters and possibly on the data. By requiring first-order
unbiasedness of the solution of the modified score equations, the appropriate form of the
modifications is obtained from standard asymptotic expansions. By requiring a different
asymptotic property from the solution of the additively modified scores, we can obtain
estimators, for example, with smaller variance, smaller mean squared error, etc.

Despite the fact that this thesis deals with the aforementioned bias-reduction method,
the results in this chapter refer generally to the asymptotic properties of an estimator
resulted from the additive modification of the score functions with a Op(1) quantity under
repeated sampling. The asymptotic expressions that are given are interesting on their own
right because they are derived in full generality and cover any situation where the usual
regularity conditions are satisfied. In this way we are presented with several alternative
directions for further work in the area.

For our purposes, the use of index notation and Einstein summation convention is
necessary, and thus this chapter is recommended to be accompanied by Appendix A.
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6.2 Additively modified score functions

Hereafter, we assume that all the necessary regularity conditions for likelihood inference
(see Cox & Hinkley, 1974, Section 9.1) hold. Under the notation of Subsection A.4.1 in
Appendix A, assume we modify the ordinary scores Ur according to

U∗
r = Ur +Ar ,

where Ar is at least three times differentiable with respect to β and is allowed to depend
on the data. Also, Ar is Op(1) as n→ ∞. Let β̃ be the resultant estimator by the solution

of the modified score equations U∗
r (β̃) = 0. In contrast, the ML estimator β̂ is the solution

of the ordinary score equations Ur(β̂) = 0.

6.3 Consistency of β̃

The consistency of β̃ is a direct consequence of the consistency of the ML estimator
and the fact that the adjustments to the scores have order Op(1). Under the regularity
conditions and the extra assumption that the ML estimate always exists and is unique
within the parameter space B, it can be proved that β̂ is a consistent estimator of β
and that

√
n(β̂−β0) is asymptotically normally distributed with zero mean and variance-

covariance matrix the inverse of the Fisher information per observation evaluated at β0,
with β0 the true but unknown parameter vector. So,

β̂r − βr
0 = Op(n

−1/2) . (6.1)

Hence, if the difference of β̂ from β̃ is smaller in order than Op(n
−1/2), then the bias-

reduced estimator is also a consistent estimator of β0.
Let ǫr = β̃r − β̂r. Since, by definition, U∗

r = Ur + Op(1), we have that the modified
scores, as defined in (6.2), are of order Op(n

1/2) and their derivatives with respect to
the parameters are Op(n), as their ordinary likelihood counterparts. A first-order Taylor

expansion of the modified scores vector at β̃ around β̂ gives

0 = U∗
r (β̃) ≈ U∗

r (β̂) + ǫsU∗
rs(β̂) ,

with U∗
rs = ∂U∗

r /∂β
s. Since β̂ is the solution of the likelihood equations we have that

Ur(β̂) = 0 and thus U∗
r (β̂) = Ar(β̂). Re-expressing in terms of ǫr we get

ǫr ≈ As(β̂)I∗rs(β̂) ,

where I∗rs is understood as the matrix inverse of −U∗
rs. By the above relation, we have

that ǫr = Op(n
−1) and combining with (6.1) we get

β̃r − βr
0 = Op(n

−1/2) .

An application of Theorem A.4.2 with a = 1/2 and t = 1/2 gives β̃r − βr
0 = op(1) and the

consistency of β̃ is derived.
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The above derivation relies heavily on the assumption of existence and finiteness of the
ML estimator in a compact subset of the parameter space B. However, there are cases,
like logistic regression, where this assumption is not valid. In these cases, we could treat
β̃ as a general “Z-estimator” and proceed according to the proofs in van der Vaart (1998,
Section 5.2).

6.4 Expansion of β̃ − β0

Let δ = β̃ − β0 and consider the expansion of U∗
r evaluated at β̃. By the consistency of β̃

we have

0 = U∗
r (β̃) = U∗

r + δsU∗
rs +

1

2
δsδtU∗

rst +
1

6
δsδtδuU∗

rstu + Op(n
−1) ,

where, hereafter, U∗
rs, U

∗
rst, U

∗
rstu, . . . denote partial derivatives of U∗

r , evaluated at β0.
For the sake of compactness of the following expressions, let δRa = δr1 . . . δra , a = 1, 2, . . ..
Also, Ars, Arst, Arstu denote higher order derivatives of the Op(1) modifications Ar and
thus are also Op(1). The above expansion is written as

0 = Ur +Ar + δsUrs + δsArs +
1

2
δstUrst +

1

6
δstuUrstu + Op(n

−1) .

The terms δstArst and δstuArstu are of order Op(n
−1) and Op(n

−3/2), respectively, and so
they are incorporated in the Op(n

−1) remainder in the expansion above.
By the second Bartlett identity in (A.5) (see Appendix A), µr,s = −µrs and so, for the

matrix inverse of the Fisher information we have µr,s = −µrs. Re-expressing in terms of
the centered log-likelihood derivatives HRa = URa − µRa and solving with respect to δr,
we have that

δr = U r +̇Ar +Hr
s δ

s +
1

2
µr

stδ
st +̇Ar

sδ
s +

1

2
Hr

stδ
st +

1

6
µr

stuδ
stu +̇Op(n

−2) , (6.2)

where +̇ denotes a drop in asymptotic order of Op(n
−1/2) for the subsequent terms, and

U r, Ar, Ar
s, H

r
s1...sa

, µr
s1...sa

are the outcomes of the contraction of Ur, Ar, Ars, Hrs1...sa ,
µrs1...sa , respectively, with µr,s. That is

U r = µr,sUs = Op(n
−1/2) ,

Ar = µr,sAs = Op(n
−1) ,

Ar
s1

= µr,sAss1 = Op(n
−1) ,

Hr
s1...sa

= µr,sHss1...sa = Op(n
−1/2) ,

µr
s1...sa

= µr,sµss1...sa = Op(1) .

By iteratively substituting δr = U r +̇Ar+Hr
s δ

s+ 1
2µ

r
stδ

st +̇Op(n
−3/2) in (6.2) (see Pace

& Salvan, 1997, § 9.3.2, for a detailed description of the “iterative substitution method”
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for stochastic Taylor expansions), we have

δr = U r +̇Ar +Hr
sU

s +
1

2
µr

stU
st (6.3)

+̇Hr
sA

s + µr
stU

sAt +Ar
sU

s +Hr
sH

s
tU

t + µr
stH

s
uU

tu

+
1

2
Hr

sµ
s
tuU

tu +
1

2
µr

stµ
s
uvU

tuv +
1

2
Hr

stU
st +

1

6
µr

stuU
stu +̇Op(n

−2) ,

where U r1...ra = U r1 . . . U ra .
Here, we should mention that if we remove the terms depending on the modifications

Ar and their derivatives Ars from (6.3) and let δ = β̂ − β0, the resultant asymptotic
expansion is exactly that of β̂ − β0. This is a direct consequence of the fact that the
modifications Ar come into the modified scores additively. The same would be true if the
modified scores were dependant to the modifications through any affine transformation.
However, this elegant correspondence would not be valid for more general non-additive
relationships between the efficient scores and the modifications.

6.5 Asymptotic normality of β̃

The asymptotic normality of β̃ is directly apparent by (6.3). Specifically,

√
nδr =

√
nµr,sUs +̇Op(n

−1/2)

and using Theorem A.4.2 with a = 1/2 and t = 1/2 we have

√
nδr =

√
nµr,sUs + op(1) .

Thus, the application of the central limit theorem on the standardized score vector and
of the Slutzky lemma (see van der Vaart, 1998, Section 2.1) gives that

√
n(β̃r − βr) is

asymptotically distributed according to a normal distribution with zero mean and variance-
covariance matrix the inverse of the Fisher information per observation κr,s = nµr,s.

6.6 Asymptotic bias of β̃

The asymptotic bias of β̃ is obtained by taking expectations in both sides of (6.3) and
by using rule (A.9) for the asymptotic orders of the expectation of each term. After the
exploitation of the contractions, an elementary algebraic manipulation gives

E(δr) = µr,sE(As) +
1

2
µr,sµt,u (2µst,u + µstu) +̈O(n−3/2) (6.4)

= µr,sE(As) −
1

2
µr,sµt,u (µs,tu + µs,t,u) +̈O(n−3/2) ,

where +̈ denotes a drop in asymptotic order for Op(n
−1) for the subsequent terms. This

expression for the asymptotic bias is the basis for the results in Firth (1993); note that
when

µr,sE(As) −
1

2
µr,sµt,u (µs,tu + µs,t,u) = O(n−3/2) ,

97



the resultant estimator has bias of order smaller than O(n−1) and hence a class of such
estimators is obtained from the location of the roots of the modified scores using one of
the following modifications

Ar ≡ A(E)
r =

1

2
(µr,s +Rrs)µ

s,tµu,v (µt,uv + µt,u,v) + R̄r ,

Ar ≡ A(O)
r =

1

2
(−Urs +Rrs)µ

s,tµu,v (µt,uv + µt,u,v) + R̄r ,

Ar ≡ A(S)
r =

1

2
(UrUs +Rrs)µ

s,tµu,v (µt,uv + µt,u,v) + R̄r ,

with Rrs and R̄r any quantities that depend on the data and the parameters and have
expectations of order at most O(n1/2) and at most O(n−1/2), respectively. Substituting
any of the above modifications back to (6.3) and taking expectations in both sides, we
conclude that the estimator which results from the solution of the modified score equations
U∗

r = 0, has bias of order o(n−1).

6.7 Asymptotic mean-squared error of β̃

Directly from its definition, the variance of an estimator β̃ of a scalar parameter β can be
expressed as

Var(β̃) = E
{

(β̃ − β0)
2
}

−
[

E(β̃ − β0)
]2
,

where E{(β̃ − β0)
2} is the mean squared error (MSE) of β̃ and E(β̃ − β0) is its bias. An

analogous expression can be obtained in the case of a multi-dimensional target parameter
β0. Denoting V rs the variance-covariance matrix of β̃ we have

V rs = E
{

(β̃r − E(β̃r))(β̃s − E(β̃s))
}

(6.5)

= E
{

(β̃r − E(β̃r) + βr
0 − βr

0 )(β̃s − E(β̃s) + βs
0 − βs

0 )
}

= E(δrδs) − E(δr)E(δs) ,

with δr = β̃r − βr
0 . The matrix E (δrδs) is the generalization of the MSE in the case of

more than one parameters. In the previous section we obtained an asymptotic expression
for E(δr) and in order to obtain the asymptotic expression of V rs we first need to consider
the asymptotic expression for E (δrδs) and, as we do in the next section, substitute in the
identity (6.5).

By (6.3) and the symmetry of δrδs, some algebraic manipulation gives

δrδs = U rs +̇ 2Hr
t U

st + 2U rAs + µr
tuU

stu

+̇ 2Hr
t U

sAt + 2Hr
tA

sU t + 2µr
tuU

stAu + µr
tuA

sU tu + 2Ar
tU

st + 2Hr
tH

t
uU

su

+Hr
tH

s
uU

tu + 2µr
tuH

t
vU

suv + µr
tuH

s
vU

tuv +Hr
t µ

t
uvU

suv + µr
tuµ

t
vwU

suvw

+ µr
tuµ

s
vwU

tuvw/4 +Hr
tuU

stu + µr
tuvU

stuv/3 +ArAs +̇Op(n
−5/2) .
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After exploiting the contractions and taking expectations in both sides above (see Exam-
ple A.4.1 in Appendix A) we have

E(δrδs) = µr,s +̈µr,vµs,wµt,y{2µvt,w,y + 2µvt,wy + (µvt,wy − µvtµwy) + µvty,w (6.6)

+ 2µvwt,y + µvwty

+ 4µw,yE(UvAt) + 2µw,yE(UtAv) + µw,yE(AvAt)

+ 2E(AyUvtUw) + 2E(AwUvtUy) + 2E(AvtUwUy)}
+ µr,vµs,wµt,yµu,z{2µvtuE(UwUyAz) + µvtuE(UyUzAw)

+ µvt,z(2µyu,w + µwu,y) + µwyu(4µvt,z + µv,tz)

+ (µvwt + µw,vt)(2µyu,z + µyuz) + 3µvtuµwyz/2

+ µvt,yµwu,z + µvtyµwu,z + µvtyµwuz/4} +̈O(n−3)

For the special case where the modifications Ar do not depend on the data, expression
(6.6) is considerably simplified, taking the form

E(δrδs) = µr,s +̈µr,vµs,wµt,y{2µvt,w,y + 2µvt,wy + (µvt,wy − µvtµwy) + µvty,w

+ 2µvwt,y + µvwty

+ µw,yAvAt + 2Ayµvt,w + 2Awµvt,y + 2Avtµw,y

+ 2Ayµvwt +Awµvty}
+ µr,vµs,wµt,yµu,z{µvt,z(2µyu,w + µwu,y) + µwyu(4µvt,z + µv,tz)

+ (µvwt + µw,vt)(2µyu,z + µyuz) + 3µvtuµwyz/2

+ µvt,yµwu,z + µvtyµwu,z + µvtyµwuz/4} +̈O(n−3)

Both for the above expression and for (6.6), if we remove the terms depending on the
modifications Ar and the derivatives of the modifications Ars, and let δr = β̂ − β0, we
obtain the corresponding expressions for the ML estimator.

In the case of a scalar target parameter β0 and letting Uk = ∂kl(β)/∂βk, µk = E(Uk),
µk,m = E(UkUm) and so on, (6.6) is written in the form

E(δ2) = F−1 +̈F−3{2µ1,1,2 + 2µ2,2 + (µ2,2 − F 2) + 3µ3,1 + µ4 (6.7)

+ 6FE(U1A) + FE(A2) + 4E(AU1U2) + 2E(Ȧl21)}
+ F−4{3µ3E(U2

1A) + 6µ2
2,1 + 9µ3µ2,1 + 11µ2

3/4} +̈O(n−3) ,

where F = µ1,1 is the Fisher information and Ȧ the derivative of the modification evaluated
at β0. If A does not depend on the data the corresponding expression is

E(δ2) = F−1 +̈F−3{2µ1,1,2 + 2µ2,2 + (µ2,2 − F 2) + 3µ3,1 + µ4

+ FA2 + 4Aµ1,2 + 2FȦ+ 3µ3A}
+ F−4{6µ2

2,1 + 9µ3µ2,1 + 11µ2
3/4} +̈O(n−3) .

All of the above expressions are considerably simplified in the case of exponential
families in canonical parameterization, because URa = µRa for a > 1 and so µRa1 ,...,Rak

,s = 0
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for a1, . . . , ak > 1. For example, in the case of a single parameter exponential family in
canonical parameterization, µ1,1,2 = −µ2

2,2 = −F 2 and µ3,1 = µ1,2 = 0, so that the above
expression reduces to

E(δ2) = F−1 +̈F−3{µ4 + FA2 + 2FȦ+ 3µ3A} + 11F−4µ2
3/4 +̈O(n−3) , (6.8)

Note that we can substitute the bias-reducing modifications Ar in the derived ex-
pressions in order to check the effect of bias-reduction to the mean squared error of the
resultant estimator. This has been done in Section 4.2 for the estimation of the log-odds
from the realization of a single binomial random variable.

Also, these expressions can be directly used to produce MSE-reducing modifications
by working on a similar way as in the previous section. For example, in the case of a
single parameter exponential family in canonical parameterization, the second-order term
in (6.8) is eliminated if

F−3{µ4 + FA2 + 2FȦ+ 3µ3A} + 11F−4µ2
3/4 = O(n−3)

or alternatively if we could find A that satisfies the differential equation

Ȧ = −2F (µ4 + 3µ3A) + 2F 2A2 + 11µ3

4F 2
+̈O(n−1) .

6.8 Asymptotic variance of β̃

The asymptotic expression for the variance of β̃ results from the direct substitution of
(6.6) and (6.4) into (6.5). After some rearrangement we have

V rs = µr,s +̈µr,vµs,wµt,y{2µvt,w,y + 2µvt,wy + (µvt,wy − µvtµwy) + µvty,w (6.9)

+ 2µvwt,y + µvwty

+ 4µw,yE(UvAt) + 2µw,yE(UtAv) + µw,yE(AvAt)

+ 2E(AyUvtUw) + 2E(AwUvtUy) + 2E(AvtUwUy)

− (2µwt,y + µwty)E(Av) − µw,yE(AvAt)}
+ µr,vµs,wµt,yµu,z{2µvtuE(UwUyAz) + µvtuE(UyUzAw)

+ µvt,z(2µyu,w + µwu,y) + µwyu(4µvt,z + µv,tz)

+ (µvwt + µw,vt)(2µyu,z + µyuz) + 3µvtuµwyz/2} +̈O(n−3) .

When the modifications Ar do not depend on the data, expression (6.9) takes the form

V rs = µr,s +̈µr,vµs,wµt,y{2µvt,w,y + 2µvt,wy + (µvt,wy − µvtµwy) + µvty,w

+ 2µvwt,y + µvwty

+ µw,yAvAt + 2Ayµvt,w + 2Awµvt,y + 2Avtµw,y

+ 2Ayµvwt +Awµvty

− (2µwt,y + µwty)Av − µw,yAvAt}
. . .
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. . .+ µr,vµs,wµt,yµu,z{µvt,z(2µyu,w + µwu,y) + µwyu(4µvt,z + µv,tz)

+ (µvwt + µw,vt)(2µyu,z + µyuz) + 3µvtuµwyz/2 +̈O(n−3) .

For both expressions above, removal of the terms depending on the modifications
results in the asymptotic expression for the variance-covariance matrix of β̂, up to and
including the O(n−2) terms. This expression is given in Peers & Iqbal (1985).

In the case of a scalar parameter, the variance of β̃ is given by the asymptotic expression

Var(β̃) = F−1 +̈F−3{2µ1,1,2 + 2µ2,2 + (µ2,2 − F 2) + 3µ3,1 + µ4 (6.10)

+ 6FE(U1A) + 4E(AU1U2) + 2E(ȦU2
1 ) − 2µ2,1E(A) − µ3E(A)}

F−4{4µ2
2,1 + 8µ3µ2,1 + 5µ2

3/2 + 3µ3E(U2
1A)} +̈O(n−3) ,

and in the case of modifications that do not depend on the data

Var(β̃) = F−1 +̈F−3{2µ1,1,2 + 2µ2,2 + (µ2,2 − F 2) + 3µ3,1 + µ4

+ 4Aµ1,2 + 2FȦ− 2µ2,1A+ 2µ3A}
F−4{4µ2

2,1 + 8µ3µ2,1 + 5µ2
3/2} +̈O(n−3) .

All of the above asymptotic expressions can be used in the same manner as the expres-
sions for the MSE in the previous section, for producing estimators with smaller variance.

6.9 General remarks

In this short chapter, we have given the asymptotic expressions for the bias, the variance
and the MSE of an estimator resulted from the solution of the modified score equations

U∗
r = Ur +Ar = 0 ,

where Ar is an arbitrary function of the parameters and possibly the data, and is O(1) as
n→ ∞. The expressions have been given in full generality and they provide a baseline for
future work towards the construction of estimators that have improved properties relative
to the traditional ML estimator. The most interesting direction seems the use of the MSE
expressions, because MSE is a measure that incorporates the trade-off between bias and
variance.

101



Chapter 7

Final remarks

7.1 Summary of the thesis

The modified-score functions approach to bias reduction (Firth, 1993) is continually gain-
ing in popularity (e.g. Mehrabi & Matthews, 1995; Pettitt et al., 1998; Heinze & Schemper,
2002; Bull et al., 2002; Zorn, 2005; Sartori, 2006; Bull et al., 2007), because of the superior
properties of the bias-reduced (BR) estimator over the traditional maximum likelihood
(ML) estimator, particularly in models for categorical responses. Most of the activity has
been noted for logistic regressions where, as the empirical studies in Heinze & Schemper
(2002) and Bull et al. (2002) illustrated, bias reduction has a clear shrinkage interpre-
tation and the BR estimates are always finite. Furthermore, the implementation of the
bias-reduction method is greatly facilitated by the fact that logistic regressions are flat
exponential families and as shown in Firth (1993), the bias-reduction method neatly cor-
responds to the penalization of the ordinary likelihood by Jeffreys invariant prior.

The current thesis has been mainly motivated by the recent applied and methodological
interest in the bias-reduction method and we aimed to widen the applicability of the
method, identifying cases where bias reduction is beneficial. Our target has been threefold:

i) To explore the nature of the bias-reducing modifications to the efficient scores and
to obtain results that facilitate the application and the theoretical assessment of the
bias-reduction method.

ii) To establish theoretically that the bias-reduction method should be considered as
an improvement over traditional ML for logistic regressions.

iii) To deviate from the flat exponential family and explore the effect of bias reduction
to some commonly used curved families for categorical responses.

For target i), we have dedicated Chapter 3. We have given the form of the general
family of modifications that result in modified score equations, which in turn result in esti-
mators with bias of order o(n−1). This family includes as special members the proposals in
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Firth (1993), namely the simplest case of modifications based on the expected information
and the slightly more elaborate modifications based on the observed information. The
class of modifications that is given in Chapter 3 has the basic property that every member
of it can be written as a shifted weighted sum of the modifications based on the expected
information, shifted by a quantity that has expectation of order at most O(n−1/2). Next,
we have shown that, in contrast to flat exponential families, the existence of a penalized
likelihood corresponding to the modified scores for general families is not generally guar-
anteed, even in the simplest case of modifications based on the expected information. In
this direction, we have derived a necessary and sufficient condition that matches the level
of generality of the applicability of the bias-reduction method (all regular problems). The
validity of this condition guarantees the existence of a penalized likelihood, and vice versa.
It has also been shown that under the consistency of the ML estimator, the consistency
and asymptotic normality of the BR estimator is guaranteed. In this way, standard tech-
niques based on the same asymptotic properties for the ML estimator, could be used also
for the BR estimator.

Despite the theoretical importance of the above results, the core of Chapter 3 is the
derivation of explicit formulae for the modified score vector for the wide class of exponential
family non-linear models with known dispersion (reviewed in Chapter 2), which includes
as special cases both univariate and multivariate GLMs, as well as more general non-linear
regressions in which the variance has a specified relationship with the mean. The formulae
that have been derived involve quantities that are readily available when the model to
be used has been specified and usually result from the output of standard computing
packages. These expressions can be used directly for the implementation of the bias-
reduction method or even theoretically in order to gain insight into the nature of the
modifications in any specific application. We have focused on univariate GLMs, where
despite the fact that penalized likelihoods exist only for canonical links, we have shown
that the implementation of the bias-reduction method can be achieved by a modified
iterative re-weighted least squares procedure (IWLS) with the simple subtraction of the
Cordeiro & McCullagh (1991) ξ-quantities from the usual ML working variates. In this
way we have generalized the modified IWLS procedure in Firth (1992a,b) for canonically
linked-models and showed the neat connections with Cordeiro & McCullagh (1991).

Chapter 4 achieves target ii). For logistic regressions, we have theoretically shown that
the BR estimates are always finite, even in separated cases where the ML estimates are
infinite. Moreover, we have formally verified the shrinkage properties of the BR estimator
and have shown that shrinkage takes place according to a metric based on the Fisher
information rather than the usual Euclidean distance. We have demonstrated that the
Heinze & Schemper (2002) and Bull et al. (2007) profile penalized-likelihood ratio (PLR)
confidence interval can have poor coverage properties, particularly for extreme parameter
values. In view of this, for assessing the uncertainty on the BR estimates, we propose a
conservative alternative to the PLR confidence interval, which preserves the good coverage
properties of the PLR interval for moderate parameter values, and approaches coverage
1 as the true parameter value tends to ∞. Furthermore, as far as multinomial responses
are concerned, we have derived the modified iterative generalized least squares (IGLS)
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procedure that produces the BR estimates by simply subtracting appropriate quantities
from the ML working variates at each iteration.

In this way, previous published work on logistic regression has been rounded off and we
concluded that the bias-reduction method should be considered as an improvement over
traditional ML.

For target iii), in Chapter 5 we have considered

a) the probit, the complementary log-log and the log-log models for binary responses
and,

b) the 1-parameter and 2-parameter logistic models (Birnbaum, 1968) from item re-
sponse theory.

The above models belong to the class of exponential family non-linear models with known
dispersion and the application of the bias-reduction method has been greatly facilitated
by the results of Chapter 3.

For binomial-response GLMs, apart from the modified IWLS procedure described in
Chapter 3, we have derived an alternative algorithm for the implementation of bias reduc-
tion. The algorithm depends on pseudo-data representations and on already implemented
ML fitting procedures, so that it allows the quick implementation of the method. Fur-
thermore, we have pursued extensive empirical studies, mainly demonstrating that the
finiteness and shrinkage properties of the BR estimator extend beyond canonical-links.
In addition, a comparison of the BR, the ML and the bias-corrected (BC, Cordeiro &
McCullagh, 1991) estimators has been performed, illustrating the superiority of the BR
estimator over the ML and BC estimators.

In the case of the two item response theory models, the 1PL model consists of par-
allel logistic regressions and the results of Chapter 4 apply directly. For the non-linear
predictor 2PL model, the modified score functions have been explicitly given and their
neat correspondence with the modified scores for the 1PL model has been shown. Apart
from the standard modification to the usual IWLS, we have, also, shown how the alter-
native fitting algorithm for binomial-response GLMs could be used for obtaining the BR
estimates. This was again achieved by a pseudo-data representation. Under an alterna-
tive asymptotic framework we have conducted a small empirical study that illustrates the
finiteness and shrinkage properties of the BR estimator and thus its superiority relative
to the ML estimator.

Although the above two studies showed that the neat properties of the BR estimator
extend beyond the logistic regression case, our results raised more new questions than the
ones answered and, certainly, further work is required in the area. In what follows we list
some of the open topics.

7.2 Further work on bias reduction

The following list could serve as an agenda for future work in the area. Most of the
items have been already mentioned in the concluding remarks and discussion parts of each
chapter. Nevertheless, we mention them here among others, in a more structured form.

104



i) Develop a formal model-comparison framework for logistic regressions that is based
upon the penalized likelihood.

ii) Develop methods for the construction of confidence intervals for the bias-reduced es-
timates in curved binary-response GLMs, where a penalized likelihood corresponding
to the modified scores does not exist.

iii) Consider the penalization of the likelihood by Jeffreys prior for curved models and
compare the resultant maximum penalized likelihood (MPL) estimators with the BR
estimators.
The proposed confidence interval for the MPL estimates in logistic regressions should
perform equally well in curved cases.

iv) Develop formal proofs for the finiteness and shrinkage properties of the BR estimates
for general binomial-response GLMs.

v) Research on how to reduce the bias in problems where the dimension of the parameter
space increases with the sample size.
Such models are for example, the 1PL and 2PL models and binary matched pair
models (Cox & Snell, 1989, §2.4). The ML estimator for such models is inconsistent
and so is the BR estimator that has been studied in the current thesis. For such
models, a different bias-reduction method has to be developed, that is robust to the
increase of the dimension of the parameter space, as the number of information units
increases. The target is the removal of the persistent O(1) term in the bias expansion
of the ML estimator, and the parallel construction of consistent estimators.

vi) Extend the bias-reduction method to cover the estimation of the dispersion parameter
in exponential family non-linear models.

vii) Use the results in Chapter 6 to construct estimators with other improved properties.
The area of additively modified scores seems fruitful and particularly, MSE-reduction
is most attractive because MSE is a measure that incorporates the trade-off between
bias and variance.

viii) Explore the properties of the resultant estimators when more elaborate modifications
than the modifications based on the expected information are used.
In the current thesis we thoroughly considered the case of modifications based on
the expected information, mainly because they have the simplest form among the
members of the family of possible bias-reducing modifications. Thus, they allowed
the development of neat theoretical and applied results. An ‘inter-comparison’ of
the properties of the estimators resulting from other modifications is still needed.

ix) Apply the modified-scores approach to bias reduction to random/mixed effects mod-
els.
The application of the bias-reduction method in the literature and in the current
thesis has been restricted to fixed effects models. The reason is that the modifi-
cations for the efficient scores involve higher order cumulants of the log-likelihood
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derivatives. When random effects are included in the model, the complex form of
the log-likelihood — due to the integrals involved — is inherited by the cumulants
of its derivatives, making the application of the method difficult.

The topic here involves research on how to apply the bias-reduction method in
random/mixed effects models and thereupon the study of the properties of the BR
estimators, determining whether the neat properties noted in fixed effects models
for categorical data generalize for random/mixed effects models.

A good reference point seems to be the work in Breslow & Lin (1995).

x) Explore more models in order to identify further cases where the use of the modified
scores is beneficial.
The results in Chapter 3 cover many models that are used in statistical applications
and allow the easy implementation and study of the impact of bias reduction. In-
terest lies in finding other models where the modification of the efficient scores is
desirable.

xi) Development of statistical software for the public use of the results of the current
thesis.
The implementation of the results in the current thesis is intended to be released
in CRAN (cran.r-project.org), as a contributed package for the R language (R
Development Core Team, 2007).
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Appendix A

Index notation and tensors

A.1 Introduction

The term “index notation” is used to describe a set of rules and conventions that facil-
itate the notation and description of multi-dimensional algebraic structures. McCullagh
(1984) recognised the importance of index notation for theoretical work in statistics and
introduced a variant that allowed him to express in an elegant fashion the, otherwise
messy, identities giving the generalized cumulants of multi-dimensional random variables
in terms of the ordinary cumulants. In the same paper he gives a generic identity con-
necting the joint cumulant generating function of any polynomial transformation with the
cumulants of the original variables. Later, in McCullagh (1987), a complete treatment of
index notation is given and it is applied to various contexts of statistics. Pace & Salvan
(1997) use index notation and derive several likelihood related expansions for statistical
problems with multi-dimensional target parameter. Both McCullagh (1987) and Pace &
Salvan (1997) insist on the great value of index notation for the study of transformation
rules for statistics under the re-parameterization of a statistical model. Towards this di-
rection, they focus on tensors. Tensors are arrays that transform in a special way under
specific groups of transformations and constitute the ‘raw materials’ for the construction
of invariants, namely quantities that their value is unaffected from the choice of coordinate
system within the group of transformations.

In this appendix we give an elementary review of index notation and tensors, focusing
mainly on results related to the contents of the thesis. For a detailed treatment the reader
is referred to the aforementioned material.

A.2 Index notation and Einstein summation convention

A.2.1 Some examples of index notation

Consider a parameter vector β = (β1, β2, . . . , βp) in ℜp. In index notation this is denoted
just as βr and the range of r is understood from the context. Similarly, the score vector
U having p-components is denoted as Ur. Also, under the same convention, Urs is used to
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dentote the p × p Hessian matrix of second derivatives of the log-likelihood with respect
to the parameters and Irs denotes minus the matrix-inverse of Urs, namely the observed
information. The same notational conventions can be used for 3-way arrays, for example,
Urst, κrst, ν

rs
t , for 4-way arrays, for example νrs

tu , and so on. All r,s,t and u above take
values in the index set {1, 2, . . . , p}. The position of the index (upper or lower or both)
plays an important role in the understanding of the nature of a quantity. Many times, it
is merely a prior convention for the quantities involved in some algebraic manipulation.
However, being consistent with this convention can reveal important properties of the
outcome and the way this behaves under certain groups of transformations. An upper
index, such as r in βr is called a contravariant index and a lower one a covariant index.
Without loss of generality, all multiply-indexed quantities are considered symmetric under
index permutations within their contravariant group of indices and within their covariant
group of indices.

A.2.2 Einstein summation convention

The power of index notation is noted after the introduction of the summation convention.
Whenever the same index appears once in the contravariant group of indices of a quantity
a and once in the covariant group of another quantity b, summation is implied over that
index.

arbr :=

p
∑

r=1

arbr .

Example A.2.1: The quadratic form UTF−1U , involving the score vector U and the
Fisher information F , can be written as µr,sUrUs where µr,s = E(UrUs) is the Fisher
information and µr,s its matrix-inverse. The correspondence in this case might seem trivial
and a waste of subscripts and superscripts. But moving to higher-order relationships,
expressions in usual matrix notation can get unsightly and hard to understand. Consider
the cubic form βrβsβtUrst, where Urst are the third partial derivatives of the log-likelihood
with respect to βr, βs and βt. This quantity appears in stochastic expansions of the score
vector. Under the notational rules of Section 2.2

βrβsβtUrst :=

q
∑

r=1

βrβTSrβ ,

with Sr = D2 (Ur;β), the p × p Hessian of the r-th component of the score vector with
respect to β. Extra care should be taken in the above summation. Any re-arrangement
of quantities should not alter the position of the quantities in βTSrβ because then the
fundamental definition of matrix multiplication is violated. This is not the case for index
notation using the summation convention. The expressions βrβsβtUrst, β

rβsUrstβ
t and

any other re-arrangement of βr, βs, βt and Urst refer to the same quantity. Imagining how
higher degree homogeneous polynomials would look in matrix notation, the superiority of
index notation for theoretical work becomes apparent.
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A.2.3 Free indices, dummy indices and transformations

Example A.2.2: Consider two vectors of random variables Y = [Y r], X = [Xr] taking
values in ℜq and having variance-covariance matrices ΣX = Var(X) and ΣY = Var(Y ),
respectively. Also, let ΣXY = [Cov(Xr, Ys)]. Consider linear transformations g(X) = AX
and h(Y ) = BY , with A and B two k × q matrices of known constants. It is known that,
the transformed random variable Z = g(X) + h(Y ) has variance-covariance matrix

Σ = AΣXA
T +AΣXYB

T +BΣT
XYA

T +BΣYB
T . (A.1)

In index notation the above equality is expressed as

σrs = ar
ta

s
uσ

tu
X + ar

t b
s
uσ

tu
XY + brta

s
uσ

tu
XY + brt b

s
uσ

tu
Y , (A.2)

with A = [ar
t ], B = [brt ] and obvious correspondences between ‘Σ’ matrices in (A.1) and ‘σ’

quantities in (A.2). Again, any re-arrangement of quantities within any summand of (A.2)
has no effect on the result. This example illustrates that, under index notation, the effect
of the variance and the covariance operators to linear transformations of multi-dimensional
random variables is the same as in the univariate case.

There is a useful distinction between the indices appearing in the summands of ex-
pressions like (A.2). Free indices are the ones appearing only once in each summand and
dummy indices are the ones used in the application of the summation convention. For
example, in any summand of (A.2) r, s are the free indices and t, u are the dummy ones.
This distinction provides two devices for easy detection of algebraic mistakes:

i) Once the letters for the free indices for one side of an equation have been chosen,
the letters used for the free indices in the other side cannot be different.

ii) For sums of products of arrays, any dummy index can appear only two times in each
summand, once in the covariant part of some quantity and once in the contravariant
part of another.

Rule ii) implies that if we change the letter for a dummy index, we have to change the
letter for its other occurrence.

A.2.4 Differentiation

In Theorem B.1.1 and Theorem B.1.2 and using matrix notation we give the general ex-
pressions for the Jacobian and Hessian matrices of composite vector valued functions. For
real-valued composite functions and in index notation, the expressions in Theorem B.1.1
and Theorem B.1.2 are special cases of an elegant expression for the higher order deriva-
tives of composite functions.

Let S ⊂ ℜm, and assume that f : S → ℜn is smooth at a point b in the interior of S.
Let T ⊂ ℜn such that f(x) ∈ T , for every x ∈ S, and assume that g : T → ℜ is smooth at
a point c = f(b) in the interior of T . Then the composite function h : S → ℜ defined by

h(x) = (g ◦ f)(x) = g(f(x)) ,
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is smooth at b. Indicating the generic arguments of f and g by b = [br] ∈ S and c =
[cs] ∈ T , respectively, the real-valued composite function h(x) = g(f(x)) will have partial
derivatives

hr =
∂h(b)

∂br
= gsf

s
r ,

where gs = ∂g(c)/∂cs|c=f(b) and f s
r = ∂f(b)s/∂br. Furthermore, the chain rule for Hessian

matrices in Theorem B.1.2 is given by

hr1r2 =
∂2h(b)

∂br1∂br2
= gs1s2f

s1
r1
f s2

r2
+ gs1f

s1
r1r2

,

where gs1s2 = ∂2g(c)/∂cs1∂cs2
∣

∣

c=f(b)
and f s1

r1r2
= ∂2f(b)s1/∂br1∂br2 . Note that, the above

two equations describe the generic elements of the Jacobian and Hessian matrices as
defined in Theorem B.1.1 and Theorem B.1.2 with no special reference to the dimension
of the algebraic structures involved and with validity of the commutative property for the
multiplication of arrays.

As we move to higher order derivatives, the relevant expressions become increasingly
unsightly in matrix notation. Index notation not only keeps the formulae elegant but
provides the means for the generic expression of derivatives of arbitrary degree. For
this purpose, the concept of a multiindex is introduced (see, also Pace & Salvan, 1997,
§9.1). Arrays such as hr1r2...ra can be denoted in a more compact form as hRa , where
Ra = {r1, r2, . . . , ra} is a finite set of a indices and is called a multiindex of order a. Using
multiindices, the generic a-th order derivative of h(b) with respect to b is given by the
expression

hRa =
a
∑

t=1

gSt
F St

Ra
, (A.3)

with
F St

Ra
=
∑

Ra/t

f s1
Ra1

. . . f st
Rat

,

where t ≤ a and
∑

Ra/t denotes summation over all possible partitions of Ra into t non-
empty subsets Ra1 , Ra2 , . . . Rat . Also,

hRa =
∂ah(b)

∂br1br2 . . . bra
, gSt

=
∂tg(c)

∂cs1 . . . cst

∣

∣

∣

∣

c=f(b)

, f s
Ra

=
∂f(b)s

∂br1 . . . bra
.

For example, by (A.3), the generic element of the array of the third order derivatives
of h with respect to b is

hR3
=

3
∑

t=1

gSt
F St

R3
=

3
∑

t=1

gSt

∑

R3/t

f s1
Rq1

. . . f st
Rqt

= gs1f
s1
r1r2r3

+ gs1s2

{

f s1
r1r2

f s2
r3

+ f s1
r1r3

f s2
r2

+ f s1
r2r3

f s2
r1

}

+ gs1s2s3f
s1
r1
f s2

r2
f s3

r3
.
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A.3 Tensors

A.3.1 Definition

Consider an array ωSa
Tb

= ωs1...sa
t1...tb

that is a function of β. Such array is called a tensor
of contravariant degree a and covariant degree b, or more concisely, a (a, b) tensor, if
under a specified injective and smooth re-parameterization γ = g(β), it transforms to ω̃Ua

Vb

according to the rule
ω̃Ua

Vb
= γu1

s1
. . . γua

sa
ωSa

Tb
βt1

v1
. . . βtb

vb
,

with ωSa
Tb

evaluated at β = h(γ), h the inverse of the transformation g and βt
v = ∂βt/∂γv ,

γu
s = ∂γu/∂βs. Also, βt

uγ
u
s = δt

s, with δt
s the Kronecker delta function, which takes value

1 for t = s and 0 else.

Example A.3.1: Consider the Fisher information µr,s = E(UrUs;β) on β. The comma
in the covariant group of indices is just a convention and its utility will become apparent
later. If we re-parameterize to γ = g(β), where g is a smooth injective map, the Fisher
information on γ is obtained by the relationship

µ̃r,s = βr
t β

s
uµr,s .

So µr,s is a (0, 2) tensor or a covariant tensor of degree 2 under the group of smooth
injections. Note that for the inverse of the Fisher information on γ we get

µ̃r,s = γr
t γ

s
uµ

t,u , (A.4)

with µr,s the matrix-inverse of the Fisher information on β. Thus, µr,s is a (2, 0) tensor
or a contravariant tensor of degree 2.

When we attribute the tensorial property to a quantity we have to state the group of
transformations we are referring to. For example while the covariance σrs in (A.2) is a
(2, 0) tensor under general affine transformations cr + crsZ

s, with cr and crs constants, it is
not a tensor under more general non-linear transformations.

A.3.2 Direct Kronecker products and contraction

A useful property of index notation is the facility of the transition from two vector spaces
to the product space constructed by them and vice-versa.

Example A.3.2: Consider the setting of Example A.2.2 and assume a sequence of n
independent copies of the q-dimensional random variable Z. This sequence can be thought
as an element of the product space ℜn × ℜp. The covariance matrix of the sequence is
δijσrs, with δij the Kronecker delta function, i, j ∈ {1, . . . , n} and r, s ∈ {1, . . . , q}. Note
that δij is a tensor under the action of the symmetric group of permutations G1 in ℜn and,
as already mentioned, σrs is a tensor under the group of general affine transformations G2

in ℜq. The Kronecker product δijσrs inherits the tensorial properties of both δij under G1

and σrs under G2 and is a tensor under the direct product group of transformations G1×G2

acting on ℜn ×ℜp. This is necessary because the joint distribution of the n independent
copies of Z is not affected by permutations of them.
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In matrix notation, δijσrs can be denoted as 1n ⊗ Σ, where 1n is the n × n identity
matrix and the symbol ⊗ is used to denote the Kronecker product operator. However,
1n ⊗Σ is generally a different matrix than Σ⊗ 1n. No such distinction has to be made in
index notation because the product of arrays is a commutative operation.

Another way of combining two existing tensors to construct a new one is to sum over
pairs of indices, a process known as contraction. For example, if ωrst and ωrs are both
tensors under some group of transformations G, then ω̃u

rs = ωrstω
tu is a (1, 2) tensor

under the same group G. Contraction is a basic operation for the construction of scalar
invariants. For example, if ASa is a (0, a) tensor and CSa is a (a, 0) tensor, then the scalar
obtained by the contraction ASaC

Sa is invariant, since under transformation we have

ÃSaC̃
Sa = ATaβ

t1
s1
. . . βta

sa
CUaγs1

u1
. . . γsa

ua

= ATaC
Uaδt1

u1
. . . δta

ua

= ATaC
Ta .

A.4 Likelihood quantities

A.4.1 Null moments and null cumulants of log-likelihood derivatives

In stochastic expansions of likelihood related quantities, the joint null moments and cu-
mulants of log-likelihood derivatives play an important role. The word null refers to the
fact that the operations of differention with respect to β and averaging over the sample
space take place at the same value for β. We define these quantities similarly to Pace
& Salvan (1997, Chapter 9) and introduce some notational conventions which allow the
effective utilization of the compactness of index notation and, at the same time, keep the
transparency on the interpretation of expressions.

Consider a statistical model with parameters the components of the p-vector β and
log-likelihood function l(β). We denote the log-likelihood derivatives by

URa = Ur1r2...ra =
∂al(β)

∂βr1βr2 . . . βra
.

For the expectations of products of log-likelihood derivatives we have

µRa = E(URa ;β) ,

µRa,Sb
= E(URaUSb

;β) ,

µRa,Sb,Tc = E(URaUSb
UTc ;β) ,

and so on. The joint null moments of log-likelihood derivatives, as defined above, are
symmetric under permutations of multiindices and under permutations of indices within
each multiindex. However, they are not generally invariant under exchange of indices
between the comma-separated groups, except in the case where the cardinality of two
or more comma-separated multiindices is one so that their indices can be interchanged.
Note that when the target parameter β is scalar, index notation gets clumsy and tedious.
In such cases we use an alternative notation, denoting the log-likelihood derivatives as
Uk = ∂kl(β)/∂βk and µk = E(Uk), µk,m = E(UkUm), etc.
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Under the validity of the regularity conditions, the first four Bartlett identities can be
written as

µr = 0 ,
µrs + µr,s = 0 ,

µrst + µr,st[3] + µr,s,t = 0 ,
µrstu + µrs,tu[3] + µr,stu[4] + µr,s,tu[6] + µr,s,t,u = 0 ,

(A.5)

where [k] indicates the sum over the k possible permutations of indices by exchanging
them between comma-separated groups and keeping the number of groups constant. So,
for example,

µr,s,tu[6] = µr,s,tu + µr,t,su + µr,u,st + µs,t,ru + µs,u,rt + µt,u,rs .

It is usually preferable to work with the null cumulants of the log-likelihood derivatives
rather that the moments. In order to avoid the introduction of further notational rules for
separating between groups of indices for the null cumulants of log-likelihood derivatives,
the letter κ is reserved for their notation. The null cumulants can be expressed in terms
of moments as follows,

nκRa = E(URa ;β) = µRa , (A.6)

nκRa,Sb
= Cov(URa , USb

;β) = µRa,Sb
− µRaµSb

,

nκRa,Sb,Tc = Cum(URa , USb
, UTc ;β) = µRa,Sb,Tc − µRaµSb,Tc{3} + 2µRaµSb

µTc ,

nκRa,Sb,Tc,Qd
= Cum(URa , USb

, UTc , UQD
;β) = µRa,Sb,Tc,Qd

− µRaµSb,Tc,Qd
{4}

− µRa,Sb
µTc,Qd

{3} + 2µRaµSb
µTc,Qd

{6} − 6µRaµSb
µTcµQd

,

and so on 1, where the notation highlights the fact that the joint cumulants of log-likelihood
derivatives are of order O(n) under random sampling of size n and {k} indicates summation
over the k possible interchanges of multiindices between the quantities involved in the
expression preceding it. For example,

µRaµSb,Tc,Qd
{4} = µRaµSb,Tc,Qd

+ µSb
µRa,Tc,Qd

+ µTcµRa,Sb,Qd
+ µQd

µRa,Sb,Tc .

Skovgaard (1986) proved a useful and elegant theorem on the differentiation of null
cumulants of log-likelihood derivatives.

Theorem A.4.1: Differentiation of cumulants of log-likelihood derivatives (Skovgaard,
1986)
Let

nκRa,Sb,Tc,... = Cum(URa , USb
, UTc , . . . ;β) = Cum(D1,D2, . . . ,Dm;β) .

Then,

n
∂κRa,Sb,Tc,...

∂βv
=
∑

i

Cum(D1,D2, . . . ,
∂Di

∂βv
, . . . ,Dm;β) + Cum(D1,D2, . . . ,Dm, Uv;β) .

1see the exlog relations (Barndorff-Nielsen & Cox, 1989, Section 5.4) which are the generic formulae
expressing cumulants in terms of moments and vice-versa.

113



The relation described in the above theorem is valid for null moments, too. That is, if
we replace κ with µ and Cum(D1,D2, . . . ,Dm;β) with E(D1D2 . . . Dm;β) wherever they
appear, the identity remains valid. This fact can be used to obtain the m-th Bartlett-
type identity by differentiating both sides of the (m − 1)-th identity. This enables the
replacement of µ with κ in (A.5) and therefore we obtain the identities

κr = 0 ,
κrs + κr,s = 0 ,

κrst + κr,st[3] + κr,s,t = 0 ,
κrstu + κrs,tu[3] + κr,stu[4] + κr,s,tu[6] + κr,s,t,u = 0 ,

for the null cumulants per observation.
In order to be able to separate the stochastic from the deterministic part of the log-

likelihood derivatives, we define the centered random variables

HRa = URa − µRa .

These quantities can be used to facilitate the assignment of asymptotic orders to the terms
of stochastic expansions of likelihood related quantities. The set of joint null cumulants
of the triangular sequence of random variables Ur, Urs, Urst, . . . is the same as the set of
cumulants of the triangular sequence of their centered counterparts. From this set of
correspondences are excluded the expectations of URa because κRa = n−1E(URa), which is
zero only for a = 1 and the corresponding expectations of HRa are zero for every a ≥ 1.
All these are direct consequences of the shift invariance of the cumulants of second order
and above, and of the unbiasedness of the score vector.

Therefore, using (A.6), the expressions giving the null cumulants in terms of the null
moments of HRa (or null centered moments of URa) are

κRa,Sb
= n−1νRa,Sb

, (A.7)

κRa,Sb,Tc = n−1νRa,Sb,Tc ,

κRa,Sb,Tc,Qd
= n−1νRa,Sb,Tc,Qd

− n−1νRa,Sb
νTc,Qd

{3}
and so on, where νRa,Sb

= E(HRaHSb
;β), νRa,Sb,Tc = E(HRaHSb

HTc ;β) etc.

A.4.2 Stochastic order and Landau symbols

Stochastic Taylor expansions are widely used in statistics for the derivation of asymptotic
expressions for complicated likelihood related quantities by omitting small order terms,
namely terms that become negligible under repeated sampling. Thus, the recognition of
the order of the terms involved in a stochastic expansion has to be done in a systematic
way. The stochastic order symbols Op(.) and op(.) are the most commonly used symbols
for describing the asymptotic order of random quantities and are defined as follows:

Definition A.4.1: Consider a sequence of scalar random variables Xn, n = 1, 2, . . ..
We write Xn = op(an) if for every ǫ > 0 and for every δ > 0 there exists an integer N(δ, ǫ)
such that

if n ≥ N(δ, ǫ) then P
(

|Xn|
|an| < δ

)

≥ 1 − ǫ ,
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where an is a sequence of constants.

Definition A.4.2: Consider a sequence of scalar random variables Xn, n = 1, 2, . . ..
We write Xn = Op(an) if for every ǫ > 0 there exists K(ǫ) > 0 and an integer N(ǫ) such
that

if n ≥ N(ǫ) then P
(

|Xn|
|an| ≤ K(ǫ)

)

≥ 1 − ǫ ,

an is a sequence of constants.

If {Xn} is a sequence of random vectors in ℜp, then Xn = op(an) if ||Xn|| = op(an)
and Xn = Op(an) if ||Xn|| = Op(an), where ||.|| denotes some norm in ℜp. Further, if
the sequence of random vectors {Xn} converges in distribution to a random vector X

(Xn
d−→X) then Xn = Op(1) (Xn is bounded in probability) as n grows towards infinity.

The converse is not generally true. Also, Xn = op(1) if and only if Xn converges in prob-
ability to zero (Xn

p−→ 0) as n→ ∞ (for definitions and examples on the various types of
stochastic convergence the reader is referred to van der Vaart, 1998, Chapter 2). These
symbols first appeared in Mann & Wald (1943) among several other symbols denoting dif-
ferent kinds of stochastic relationships, and they are generalizations of their deterministic
counterparts o(.) and O(.) (usually referred to as the Landau symbols).

Definition A.4.3: Consider a sequence of real numbers bn, n = 1, 2, . . .. We write
bn = o(an) if for every ǫ > 0 there exists positive integer N(ǫ) such that

if n ≥ N(ǫ) then |bn| < ǫ|an|

or, alternatively, if limn→∞ |bn|/|an| = 0

Definition A.4.4: Consider a sequence of real numbers bn, n = 1, 2, . . .. We write
bn = O(an) if there exists ǫ > 0 and positive integer N(ǫ) such that

if n ≥ N(ǫ) then |bn| < ǫ|an|

or, alternatively, lim supn→∞ |bn|/|an| <∞
By the above definitions, for any real constant c, Op(an), op(an), O(an), o(an) are

equivalent to canOp(1), canop(1), canO(1), cano(1), respectively. Also, while Op(n
c) =

Op(n
c+1), Op(n

c+1) 6= Op(c
t) and the same is true when Op is replaced with either O or

o or op. So, in expressions like Xn = op(an) the use of the equality symbol is a slight
abusage of notation. However, its use is convenient and it denotes the assignment of the
property in the right hand side to the quantities of the left hand side. To completely clarify
this asymmetry of the definition of these symbols, Xn = Op(an) should be understood as
“Xn is at most of order an in probability” and Xn = op(an) as “Xn is of order smaller
than an in probability”. The same interpretation should be used for their deterministic
counterparts omitting the expression “in probability”.

A complete treatment of stochastic order symbols and illustrative examples of their
use is given in Bishop et al. (1975, Section 14.4). Some of the properties of stochastic and
deterministic order symbols are given below. They are used without comment throughout
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the thesis. If a, b are real numbers and k = max{a, b} then

Products Sums
o(na)o(nb) = o(na+b) o(na) + o(nb) = o(nk)

O(na)O(nb) = O(na+b) O(na) + O(nb) = O(nk)
O(na)o(nb) = o(na+b) O(na) + o(nb) = O(nk)
op(n

a)op(n
b) = op(n

a+b) op(n
a) + op(n

b) = op(n
k)

Op(n
a)Op(n

b) = Op(n
a+b) Op(n

a) + Op(n
b) = Op(n

k)
Op(n

a)op(n
b) = op(n

a+b) Op(n
a) + op(n

b) = Op(n
k)

op(n
a)o(nb) = op(n

a+b) Compositions
Op(n

a)o(nb) = op(n
a+b) Op(O(na)) = Op(n

a)
O(na)op(n

b) = op(n
a+b) o(Op(n

a)) = op(n
a)

O(na)Op(n
b) = Op(n

a+b) op(Op(n
a)) = op(n

a)

The compositions above represent the effect of a linear function f(x) on a quantity of
known stochastic or deterministic order. For example, the equivalence o(Op(n

a)) = op(n
a)

is interpreted as if f(x) = o(x) and Xn = Op(n
a), then f(Xn) = op(n

a). Further, we
mention and prove a very useful result that describes when a Op quantity is op and gives
the appropriate order for the convergence in probability. This is a generalization of the
result of exercise 6 in Bishop et al. (1975, Section 14.4.6) and is extensively used in
stochastic expansions to formally justify the omission of lower order terms, ensuring that
under repeated sampling they converge in probability to zero faster than the included
terms.

Theorem A.4.2: A connection between Op and op.
If Xn = Op(n

−a) with a > 0 then Xn = op(n
−a+t), for every t > 0.

Proof. By Definition A.4.2 we have that for every ǫ > 0 there exists some constant K(ǫ) >
0 and positive integer N(ǫ) such that if n ≥ N(ǫ) then P (na|Xn| ≤ K(ǫ)) ≥ 1 − ǫ or,
equivalently, if n ≥ N(ǫ) then P

(

na−t|Xn| ≤ n−tK(ǫ)
)

≥ 1 − ǫ, for t > 0.
Fix ǫ > 0. For every n ≥ N(ǫ) there exists δ > n−tK(ǫ) with

1 − ǫ ≤ P
(

na−t|Xn| ≤ n−tK(ǫ)
)

≤ P
(

na−t|Xn| < δ
)

. (A.8)

Let ∆n = {δ : δ > n−tK(ǫ)|t > 0, ǫ > 0} and so ∆n ⊂ ℜ+, with ℜ+ the set of all positive
real numbers. Also, let ∆̄n = ℜ+ − ∆n and for a subset A of ℜ+ define the the length of
A to be lenA = supA− inf A. Hence, len ∆̄n = n−tK(ǫ).

Relation (A.8) is satisfied for any δ in ∆N(ǫ) but not necessarily for δ in ∆̄N(ǫ). However,
note that ∆∞ ≡ ℜ+ and ∆̄∞ ≡ ∅, with ∅ the empty set. Additionally, len ∆̄n is a strictly
decreasing function of n. Hence, the validity of (A.8) can be justified for any choice of
δ ∈ ℜ+ as long as n ≥ N∗(δ, ǫ), with N∗(δ, ǫ) a positive integer sufficiently larger that
N(ǫ).

Thus for every δ ∈ ℜ+ there exists N∗(δ, ǫ) > N(ǫ) such that if n ≥ N∗(δ, ǫ) then
P
(

na−t|Xn| < δ
)

≥ 1−ǫ, for t > 0. By the arbitrariness of choice of ǫ and definition A.4.1,
we conclude that Xn = op(n

−a+t) for t > 0.
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A.4.3 Asymptotic order of null moments and cumulants of log-likelihood derivatives

Under random sampling of size n, the log-likelihood derivatives are all sums of n indepen-
dent contributions and therefore

URa =

{

Op(n
1/2) for a = 1

Op(n) for a > 1
,

since Ur has mean zero. Analogously, by an application of the central limit theorem, the
centered random variables HRa are distributed according to a normal distribution with
zero mean and O(n−1) variance-covariance matrix for large n. Thus, they are of order
Op(n

1/2) for every a ≥ 1. Also, all the joint null cumulants of log-likelihood derivatives
are of order O(n).

For the identification of the asymptotic order of central moments of log-likelihood
derivatives, Pace & Salvan (1997, Section 9.22) use the exlog relations (Barndorff-Nielsen
& Cox, 1989, Section 5.4) in order to derive the following rule for the expectations of
products of centered log-likelihood derivatives.

νRa1 ,Sa2 ,...,Tad
=

{

O(nd/2) if d is even

O(n(d−1)/2) if d is odd
. (A.9)

Example A.4.1: To illustrate the use of the above rule consider the expectation of
products of centered log-likelihood derivatives νrs,tu,v,w = E(HrsHtuUvUw) .

By (A.7),
nκrs,tu,v,w = νrs,tu,v,w − νrs,tuνv,w{3} ,

where {3} indicates summation over the three possible permutations of comma separated
groups of indices for the summand preceding it. Since Hr = Ur we have that νr1,r2,...,rd

=
µr1,r2,...,rd

. Hence

νrs,tu,v,w = νrs,tuνv,w{3} + O(n)

= νrs,tuνv,w + νrs,vνtu,w + νrs,wνtu,v + O(n)

= µv,w(µrs,tu − µrsµtu) + µrs,vµtu,w + µrs,wµtu,v + O(n) ,

where the O(n) term nκrs,tu,v,w is omitted from the expressions and only O(n2) terms
are involved. By the second Bartlett relation µr,s = −µrs = nκr,s (the total Fisher
information) and by the fact that νRa,Sb

= nκRa,Sb
for every a, b ≥ 1, the above equation

can be re-expressed as

νrs,tu,v,w = n2κrs,tuκv,w + n2κrs,vκtu,w + n2κrs,wκtu,v + O(n) .

This is an evaluation of E(HrsHtuUvUw) in terms of cumulants, omitting any O(n) terms.
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Appendix B

Some complementary results and

algebraic derivations

This appendix contains some complementary material to support proofs of theorems and
derivation of results in Chapter 4 and Chapter 5. Despite the fact that in several cases
they constitute the corner stones for the results in the main text, they are stated within
an appendix since their inclusion might be distracting to the reader.

Each section depends on the material in the main text, that the section refers to. Thus,
the current appendix is standalone neither in notation nor in material, but every section
has to be read in conjunction with the corresponding part of the main text.

B.1 Score functions and information measures for exponential family

non-linear models

B.1.1 Some tools on the differentiation of matrices

In order to derive the score functions and the information measures for exponential family
non-linear models we use two main results on the differentiation of vectors and matrices.

Theorem B.1.1: Chain Rule for Jacobian matrices (Magnus & Neudecker, 1999, §5.12).
Let S ⊂ ℜm, and assume that f : S → ℜn is differentiable at an interior point b of S. Let
T ⊂ ℜn such that f(x) ∈ T , for every x ∈ S, and assume that g : T → ℜp is differentiable
at an interior point c = f(b) of T . Then the composite function h : S → ℜp defined by

h(x) = (g ◦ f)(x) = g(f(x)) ,

is differentiable at b and the p×m Jacobian of h with respect to b is defined by

D (h(b); b) = D (g(c); c)D (c; b) .
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Theorem B.1.2: Chain Rule for Hessian matrices (Magnus & Neudecker, 1999, §6.10).
Let S ⊂ ℜm, and assume that f : S → ℜn is twice differentiable at an interior point b of
S. Let T ⊂ ℜn such that f(x) ∈ T , for every x ∈ S, and assume that g : T → ℜp is twice
differentiable at an interior point c = f(b) of T . Then the composite function h : S → ℜp

defined by
h(x) = (g ◦ f)(x) = g(f(x)) ,

is twice differentiable at b and the pm×m Hessian of h with respect to b is defined by

D2 (h(b); b) = (1p ⊗D (c; b))T D2 (g(c); c)D (c; b) + (D (g(c); c) ⊗ 1m)D2 (c; b) ,

where, for example, the Hessian of a function α : ℜn → ℜp with respect to its argument
x ∈ ℜn is the pn× n matrix

D2 (α;x) =











D2 (α1;x)
D2 (α2;x)

...
D2 (αp;x)











,

with

D2 (αi;x) =











∂2αi/∂x
2
1 ∂2αi/∂x1∂x2 . . . ∂2αi/∂x1∂xn

∂2αi/∂x1∂x2 ∂2αi/∂x
2
2 . . . ∂2αi/∂x2∂xn

...
...

. . .
...

∂2αi/∂xn∂x1 ∂2αi/∂xn∂x2 . . . ∂2αi/∂x
2
n











,

and 1p and 1n are the p× p and n× n identity matrices, respectively.

B.1.2 Score functions and information measures

From the form of the log-likelihood function for exponential family non-linear models with
known dispersion (2.8), the log-likelihood contribution of observation yr is

lr ≡ lr(β; yr, λr) =
yT

r θr − b(θr)

λr
, (B.1)

with λr known and fixed.
For the r-th contribution, the transformation from the parameter space B to the real

line (where (B.1) takes values), could be represented visually by the diagrams below:

B −→ H −→ Θ −→ ℜ
with B ⊂ ℜp, H ⊂ ℜq and Θ ⊂ ℜq.

We move progressively obtaining the Jacobian and the Hessian matrices for these
transformations, making use of the relationships

E(Y ; θ) = µ∗(θ) = ∇θb(θ) ,

Cov(Y ; θ) = Σ∗(θ) = λD2 (b(θ); θ) ,

and Theorem B.1.1 and Theorem B.1.2.
We have:
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• The q × p Jacobian of the transformation B −→ H is

D (ηr;β) = Zr ,

and the corresponding qp× p Hessian is

D2 (ηr;β) =











D2 (ηr1;β)
D2 (ηr2;β)

...
D2 (ηrq;β)











.

• The q × q Jacobian of the transformation H −→ Θ is

D (θr; ηr) = D (θr;µr)D (µr; ηr) = λrΣ
−1
r DT

r ,

and the q2 × q Hessian is

D2 (θr; ηr) = Vr =











Vr1

Vr2
...
Vrq











,

with Vrs = D2 (θrs; ηr).

• The q × p Jacobian of the transformation B −→ Θ is

D (θr;β) = D (θr; ηr)D (ηr;β) = λrΣ
−1
r DT

r Zr ,

and the qp× p Hessian is

D2 (θr;β) = (1q ⊗D (ηr;β))T D2 (θr; ηr)D (ηr;β) + (D (θr; ηr) ⊗ 1p)D2 (ηr;β)

= (1q ⊗ Zr)
T VrZr + λr

[(

Σ−1
r DT

r

)

⊗ 1p

]

D2 (ηr;β) .

• The 1 × q gradient of the transformation Θ −→ ℜ is

D (lr; θr) = λ−1
r (yr − µr)

T ,

and the q × q Hessian is

D2 (lr; θr) = −λ−1
r D2 (b(θr); θr) = −λ−2

r Σr .

Notice that, in accordance with the notational rules in Section 2.2, all the matrices ap-
pearing above that are functions of the parameter vector β are denoted just by their cor-
responding letter. So, Zr ≡ Zr(β), Σr ≡ Σr(β), Dr ≡ Dr(β), Vr ≡ Vr(β) and µr ≡ µr(β).

Since the log-likelihood itself is a sum of n independent contributions, the vector of
score functions, the observed information matrix and the Fisher information matrix are
all sums of n independent contributions.
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Score functions

Using the above results the p-vector of score functions U ≡ U(β) is the sum of n indepen-
dent contributions and has the form

U =

n
∑

r=1

(D (lr;β))T =

n
∑

r=1

(D (lr; θr)D (θr;β))T =

n
∑

r=1

ZT
r DrΣ

−1
r (yr − µr) . (B.2)

So, in the case of exponential family non-linear models with known dispersion, the t-th
component of the score vector has the generic form

Ut =

n
∑

r=1

q
∑

s=1

crts(yrs − µrs) (t = 1, . . . , p) ,

where crts is the (t, s)-th element of the p× q matrix Cr = ZT
r DrΣ

−1
r and yrs, µrs denote

the s-th components of yr and µr respectively.

Observed information

The observed information I ≡ I(β) is defined as minus the Hessian of the log-likelihood
with respect to the parameters β. Thus, for the p × p observed information matrix I on
β we have

I = −
n
∑

r=1

D2 (lr;β)

= −
n
∑

r=1

[

D (θr;β)T D2 (lr; θr)D (θr;β) + (D (lr; θr) ⊗ 1p)D2 (θr;β)
]

,

so that

I =
n
∑

r=1

ZT
r WrZr −

n
∑

r=1

q
∑

s=1

λ−1
r ZT

r VrsZr(yrs − µrs) (B.3)

−
n
∑

r=1

q
∑

s,u=1

(yrs − µrs)krsuD2 (ηru;β) ,

with Wr = DrΣrD
T
r and krsu the (s, u)-the element of the matrix Σ−1

r DT
r .

Expected information

The expected or Fisher information F ≡ F (β) is defined as the variance-covariance matrix
of the score vector. Under the independence of the random variables Y1, Y2, . . . , Yn, for
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the p× p expected information matrix F on β we have

F = E
(

UUT
)

(B.4)

= E

(

n
∑

r=1

ZT
r DrΣ

−1
r (Yr − µr)

n
∑

i=1

(Yi − µi)
T Σ−1

i DT
i Zi

)

=

n
∑

r=1

ZT
r DrΣ

−1
r E

[

(Yr − µr)(Yr − µr)
T
]

Σ−1
r DT

r Zr

=
n
∑

r=1

ZT
r WrZr .

By (B.2), (B.3), (B.4) we can verify that the well-known Bartlett relations (Bartlett,
1953, Section 2) are satisfied for the class of exponential family non-linear models with
known dispersion under the regularity conditions. So,

E(U) ≡ E [D (l(β);β)] = 0 ,

E(I) ≡ −E
[

D2 (l(β);β)
]

= E
[

D (l(β);β)T D (l(β);β)
]

≡ F ,

because the expectation of the two last summands in the right hand side of (B.3) is zero.

B.2 Modified scores for exponential family non-linear models

B.2.1 Introduction

In Section 3.2 we give the general form of the modified scores that result in first-order
unbiased estimators in matrix notation:

U∗
t = Ut +

1

2

p
∑

u=1

etu trace
{

F−1(Pu +Qu)
}

(t = 1, . . . , p) , (B.5)

where Pu = E(UUTUu) stands for the u-th block of the p2 × p matrix of the third order
cumulant of the scores, and Qu = E(−IUu) for the u-th block of the p2×p blocked matrix
of the covariance of the first and second derivatives of the log-likelihood with respect to
the parameters. Also, the alternatives for etu are either

etu ≡ e
(E)
tu =

[

RF−1 + 1p

]

tu

or
etu ≡ e

(O)
tu =

[

(I +R)F−1
]

tu

or
etu ≡ e

(S)
tu =

[

(UUT +R)F−1
]

tu
,

with 1p the p× p identity matrix.
This section is devoted to the detailed derivation of the form of explicit formulae for the

modified scores in the case of exponential family non-linear models with known dispersion
and it is intended to accompany Section 3.6 of the main text.
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B.2.2 Derivation of the modified scores for exponential family non-linear models

As already mentioned in Section 3.2 any choice of etu among the alternatives in (B.5)
results in first-order unbiased estimators and should depend upon the model under con-
sideration, the chosen implementation procedure and generally to user-related choices for
any specific application. For this reason they are going to remain unchanged in the explicit
formulae derived here. Further, the form of the scores U , the Fisher information F and
the observed information I on the model parameters β is derived in Subsection B.1.2 and
we only need to derive explicit formulae for the cumulant matrices Pt and Qt, t = 1, . . . , p.
Under the notational rules of Section 3.2, from (B.2) and the independence of the sequence
of the random variables {Yr} we have

Pt = E(UUTUt) =
∑

r

q
∑

s=1

crtsCrE
{

(Yrs − µrs)(Yr − µr)(Yr − µr)
T
}

CT
r .

In the above expression, crts is the (t, s)-th element of the p × q matrix Cr = ZT
r DrΣ

−1
r ,

where Σr is the q × q variance-covariance matrix of Yr, Dr is the q × q matrix D (µr; ηr)
T

and Zr is the q × p matrix D (ηr;β). Substituting, we have that

Pt = E(UUTUt) =
∑

r

q
∑

s=1

[ZT
r DrΣ

−1
r ]tsZ

T
r DrΣ

−1
r KrsΣ

−1
r DT

r Zr ,

where Krs denotes the s-th block of rows of Kr, s = 1, . . . , q, with Kr the blocked q2 × q
matrix of cumulants of order three and degree three of the random vector Yr. So,

Pt = E(UUTUt) =
∑

r

q
∑

s,v=1

[DrΣ
−1
r ]vsZ

T
r DrΣ

−1
r KrsΣ

−1
r DT

r Zrzrvt , (B.6)

Further, from (B.2) and (B.3) we have

Qt = −E(IUt) =
∑

r

λ−1
r

q
∑

s,u=1

crtsE {(Yru − µru)(Yrs − µrs)}ZT
r VruZr

+
∑

r

q
∑

s,u,w=1

crtwE [(Yrw − µrw)(Yrs − µrs)] krsuD2 (ηru;β)

=
∑

r

λ−1
r

q
∑

s,u=1

crtsσrsuZ
T
r VruZr

+
∑

r

q
∑

s,u,w=1

crtwσrwskrsuD2 (ηru;β) ,

where Vrs = D2 (θrs; ηr) is the s-th q×q block of the q2×q blocked matrix Vr = D2 (θr; ηr),
krsu is the (s, u)-the element of the matrix Σ−1

r DT
r and σrsu is the (s, u)-th component of
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Σr. So,

Qt =
∑

r

λ−1
r

q
∑

s,u=1

[DrΣ
−1
r ]usZ

T
r (Σrs ⊗ 1q)VrZrzrut (B.7)

+
∑

r

q
∑

s,u,w=1

[DrΣ
−1
r ]us[D

T
r ]swD2 (ηrw;β) zrut

=
∑

r

λ−1
r

q
∑

s,v=1

[DrΣ
−1
r ]vsZ

T
r (Σrs ⊗ 1q)VrZrzrvt

+
∑

r

q
∑

s,v=1

[DrΣ
−1
r ]vs([D

T
r ]s ⊗ 1q)D2 (ηr;β) zrvt ,

By (B.6) and (B.7) and the definitions of Section B.1, we have that

Pt +Qt =
∑

r

q
∑

s,v=1

[DrΣ
−1
r ]vsZ

T
r

{

DrΣ
−1
r KrsΣ

−1
r DT

r + λ−1
r (Σrs ⊗ 1q)Vr

}

Zrzrvt

+
∑

r

q
∑

s,v=1

[DrΣ
−1
r ]vs([D

T
r ]s ⊗ 1q)D2 (ηr;β) zrvt ,

Now, D2 (µrs; θr) = λ−2
r Krs, and by Theorem B.1.2, for the first summand on the right

hand side of the above expression we have that

DrΣ
−1
r KrsΣ

−1
r DT

r + λ−1
r (Σrs ⊗ 1q)Vr

=D (µr; ηr)
T D (θr;µr)

T D2 (µrs; θr)D (θr;µr)D (µr; ηr) + (D (µrs; θr) ⊗ 1q)D2 (θr; ηr)

=D (θr; ηr)
T D2 (µrs; θr)D (θr; ηr) + (D (µrs; θr) ⊗ 1q)D2 (θr; ηr) = D2 (µr; ηr) ,

which is the matrix of second derivatives of the inverse link function with respect to the
elements of the predictors vector ηr, and thus it depends only on the linking structure of
the model.

So, given that [DT
r ]s = D (µrs; ηr) a representation for Pt +Qt is

Pt +Qt =
∑

r

q
∑

s,v=1

[DrΣ
−1
r ]vs

{

ZT
r D2 (µrs; ηr)Zr (B.8)

+ (D (µrs; ηr) ⊗ 1q)D2 (ηr;β)
}

zrvt

or

Pt +Qt =
∑

r

q
∑

s=1

ZT
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)Zrzrst (B.9)

+
∑

r

q
∑

s=1

(Wrs ⊗ 1q)D2 (ηr;β) zrst ,
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where Wrs is the s-th row of the q × q matrix Wr = DrΣ
−1
r DT

r as a 1 × q vector and
[DrΣ

−1
r ]s is the s-th row of DrΣ

−1
r as a 1 × q vector. The above expression can be furher

simplified by noting that

ZT
r D2 (µrs; ηr)Zr + (D (µrs; ηr) ⊗ 1q)

=D (ηr;β)T D2 (µrs; ηr)D (ηr;β) + (D (µrs; ηr) ⊗ 1q)

=D2 (µrs;β) .

Hence another representation of the sum of cumulants would be

Pt +Qt =
∑

r

q
∑

s,v=1

[DrΣ
−1
r ]vsD2 (µrs;β) zrvt . (B.10)

Despite the apparent simplicity of the above expression when compared to (B.8) or (B.9),
the latter expressions are preferred because they explicitly illustrate how the sum Pt +Qt

can be decomposed to a part that depends on the linking structure through D2 (µr; ηr) and
a part that depends on the, generally, non-linear structure of the predictor with respect
to the model parameters through D2 (ηr;β).

Substituting (B.9) in (B.5) we have that

U∗
t = Ut +

1

2

p
∑

u=1

etu trace
{

F−1(Pu +Qu)
}

= Ut +
1

2

p
∑

u=1

etu trace

{

F−1
∑

r

q
∑

s=1

ZT
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)Zrzrsu

}

+
1

2

p
∑

u=1

etu trace

{

F−1
∑

r

q
∑

s=1

(Wrs ⊗ 1q)D2 (ηr;β) zrsu

}

= Ut +
1

2

∑

r

q
∑

s=1

trace
{

F−1ZT
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)Zr

}

p
∑

u=1

etuzrsu

+
1

2

∑

r

q
∑

s=1

trace
{

F−1(Wrs ⊗ 1q)D2 (ηr;β)
}

p
∑

u=1

etuzrsu

= Ut +
1

2

∑

r

q
∑

s=1

trace
{

ZrF
−1ZT

r WrW
−1
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)

}

p
∑

u=1

etuzrsu

+
1

2

∑

r

q
∑

s=1

trace
{

F−1(Wrs ⊗ 1q)D2 (ηr;β)
}

p
∑

u=1

etuzrsu

= Ut +
1

2

∑

r

q
∑

s=1

trace
{

HrW
−1
r ([DrΣ

−1
r ]s ⊗ 1q)D2 (µr; ηr)

}

p
∑

u=1

etuzrsu

+
1

2

∑

r

q
∑

s=1

trace
{

F−1(Wrs ⊗ 1q)D2 (ηr;β)
}

p
∑

u=1

etuzrsu ,

where Hr is as defined in Section 2.4.
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B.3 Some lemmas

Lemma B.3.1: Magnus & Neudecker (1999, Ch. 11, theorem 15). Let A be a positive
definite n× n matrix with eigenvalues λ1 ≤ λ1 ≤ . . . ≤ λn. Then

min
GT G=Ik

detGTAG =

k
∏

i=1

λi ,

max
GT G=Ik

detGTAG =

k
∏

i=1

λn−k+i .

Lemma B.3.2: Magnus & Neudecker (1999, Ch. 11, theorem 9). Let λk(C) be the
k-th eigenvalue of a square matrix C. For any symmetric n × n matrix A and positive
semidefinite matrix B,

λr (A+B) ≥ λr (A) , r = 1, 2, . . . , n .

If B is positive definite, then the inequality is strict.

Lemma B.3.3: If A and B are both diagonal n×n matrices with non-negative diagonal
elements {ar} and {br}, respectively , and ar ≥ br, for every r = 1, . . . , n, then, if X is a
n× p matrix, det{XTAX} > det{XTBX},.

Proof. Since A ≥ B, elementwise, A = B + C, where C is a diagonal matrix with non-
negative entries. Further, XTAX, XTBX and XTCX are positive semidefinite, by the
non-negativity of the diagonal elements of A, B and C, respectively. Hence, by Lemma
B.3.2,

λt

(

XTAX
)

≥ λt

(

XTBX
)

, t = 1, 2, . . . , p .

Since the determinant of a matrix is the product of its eigenvalues the result follows.

Lemma B.3.4: Magnus & Neudecker (1999, Ch. 11, theorem 25). For any two positive
semidefinite matrices A and B of the same order, and 0 < θ < 1, we have

detAθ detB(1−θ) ≤ det {θA+ (1 − θ)B} .

Thus, the function f(A) = log detA is concave in the space of all positive semidefinite
matrices.

Lemma B.3.5: Consider continuous functions f and g defined on some subset of ℜp

and taking values in ℜ. Further, let xm = arg max f(x) and ym = arg max{f(x) + g(x)}.
Then, g(ym) ≥ g(xm).

Proof. Since ym = arg max{f(x) + g(x)} we have that

f(ym) + g(ym) ≥ f(xm) + g(xm) .

But by the definition of xm, f(xm) ≥ f(ym) so that necessarily g(ym) ≥ g(xm).
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B.4 Definition of separation for logistic regression

In this section we give the definition of separation and the theorems on the finiteness
(existence, in the terminology in Albert & Anderson, 1984) of the maximum likelihood
estimates found in Albert & Anderson (1984) and Lesaffre & Albert (1989). The reader
is also referred to Santner & Duffy (1986) for corrections on the proofs of some theorems
in Albert & Anderson (1984).

The setting is the same as in Section 4.3.7.3. Consider n independent realizations of
the categorical random variable G taking values 1, 2, . . . , k and a p-dimensional covariate
setting xr that corresponds to each realization of G, r = 1, . . . , n. The baseline category
representation of logistic regression for multinomial responses can be written as

log
πrs

πrk
= ηs = βT

s xr (s = 1, 2, . . . , q) ,

where πrs = P (G = s|xr), q = k − 1 and xT
r is the r-th row of the n× p design matrix X,

assumed to be of full rank; if an intercept parameter is to be included in the model the
the first column of X is a column of ones.

Here, γT = (βT
1 , . . . , β

T
q )T and the parameter space Γ is assumed to be an open subset

of ℜpq. Let E = {1, 2, . . . , n} and Es the set of row identifiers of X for observations with
category label s, such that

⋃k
s=1Es = E. Writing r(s) we denote all those row identifiers

that belong to Es. Also, let C = {1, 2, . . . , k} and βk = 0.

Definition B.4.1: Complete separation (Albert & Anderson, 1984, Section 3.2). We
say that there is complete separation of the sample points, if there exists vector γ ∈ Γ
such that for every s ∈ C and for every r(s) and t ∈ C \ {s},

(βs − βt)
Txr > 0 . (B.11)

Definition B.4.2: Quasi-complete separation (Albert & Anderson, 1984, Section 3.3).
We say that there is quasi-complete separation of the sample points, if there exists vector
γ ∈ Γ such that for every s ∈ C and for every r(s) and t ∈ C \ {s},

(βs − βt)
Txr ≥ 0 , (B.12)

with equality satisfied for at least one triplet (r, s, t).

Definition B.4.3: Overlap (Albert & Anderson, 1984, Section 3.4). We say that the
sample points are overlapping if neither complete nor quasi-complete separation occur.
That is if for every vector γ ∈ Γ there exists a triplet (r, s, t) with s ∈ C and t ∈ C \ {s}
such that

(βs − βt)
Txr < 0 .

Theorem B.4.1: (Albert & Anderson, 1984, Theorem 1).
If there is complete separation of the sample points, the maximum likelihood estimator γ̂
does not exist and

max
γ∈Γ

L(γ;X) = 1 ,

where L(γ;X) is the likelihood function for γ.
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Theorem B.4.2: (Albert & Anderson, 1984, Theorem 2). If there is quasi-complete
separation of the sample points, the maximum likelihood estimator γ̂ does not exist and

max
γ∈Γ

L(γ;X) < 1 .

Theorem B.4.3: (Albert & Anderson, 1984, Theorem 3). If the sample points are
overlapping, the maximum likelihood estimate γ̂ exists and is unique.

Theorem B.4.4: (Lesaffre & Albert, 1989, Theorem 2). Let F(c) be the Fisher infor-
mation on γ evaluated at the c-th iteration of the fitting procedure, c = 1, 2, . . ..

i. If rankX < p then, for every c, det(F(c)) = 0.

ii. If rankX = p then, for every finite c, det(F(c)) > 0. There is (quasi-) complete

separation of the sample points if and only if there exists a diagonal element of F−1
(c)

which diverges as we maximize the likelihood L(γ;X).

B.5 Derivation of the modified scores for multinomial logistic regression

models

By (4.22), the modified scores based on the expected information for a multinomial logistic
regression model are

U∗
t (γ) =

∑

r

q
∑

s=1

(

yrs −mrπrs +
1

2
trace

{

HrW
−1
r Krs

}

)

zrst (t = 1, . . . , pq) , (B.13)

where, Wr = mr diag(πr)−mrπrπ
T
r , Krs is a q×q symmetric matrix with (u, v)-th element

the third order cumulants of Yr and Hr is the r-th diagonal block of the nq×nq asymmetric
hat matrix H. The (u, v)-th element of Krs is given by

κrsuv = Cum(Yrs, Yru, Yrv) =







mrπrs(1 − πrs)(1 − 2πrs) s = t = u
−mrπrsπru(1 − πrs) s = t 6= u
2mrπrsπrtπru s, t, u distinct

. (B.14)

Also, W−1
r has (s, u)-th element

ρrsu =

{

m−1
r (π−1

rs + π−1
rk ) s = u

m−1
r π−1

rk s 6= u
, (B.15)

with πrk = 1 −∑q
s=1 πrs.

We can further simplify (B.13) by exploiting the structure of trace{HrW
−1
r Krs}. We

have

trace{HrW
−1
r Krs} =

q
∑

u,v=1

hruvbrsvu , (B.16)

where brsvu is the (v, u)-th element of Brs = W−1
r Krs and hruv is the (u, v)-th element of

Hr. By using (B.14), (B.15) and letting S = {1, 2, . . . , q} we have,
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• for s = u:

brsvs =
∑

w∈S

ρrvwκrsws

= ρrvsκrsss +
∑

w∈S\{s}
ρvwκrsws

= mrπrs(1 − πrs)(1 − 2πrs)ρrvs −mrπrs(1 − 2πrs)
∑

w∈S\{s}
πrwρrvw ,

◮ for v = s = u,

brsss = πrs(1 − πrs)(1 − 2πrs)(π
−1
rs + π−1

rk ) − πrs(1 − 2πrs)
∑

w∈S\{s}
πrw/πrk

= (1 − πrs)(1 − 2πrs) + πrs(1 − πrs)(1 − 2πrk)/πrk − πrs(1 − 2πrs)(1 − πrk)/πrk

= 1 − 2πrs ,

◮ for v 6= s = u,

brsvs = πrs(1 − πrs)(1 − 2πrs)/πrk − πrs(1 − 2πrs)
∑

w∈S\{s,v}
πrw

− πrs(1 − 2πrs) − πrsπrv(1 − 2πrs)/πrk

= πrs(1 − 2πrs)/πrk − πrs(1 − 2πrs)(1 − πrk)/πrk − πrs(1 − 2πrs)

= 0 ,

• for s 6= u:

brsvu =
∑

w∈S

ρrvwκrswu

= ρrvsκrssu + ρrvuκrsuu +
∑

w∈S\{s,u}
ρrvwκrswu

= −mrπrsπru(1 − 2πrs)ρrvs −mrπrsπru(1 − 2πru)ρrvu

+ 2mrπrsπru

∑

w∈S\{s,u}
πrwρrvw ,

◮ for v = s but v 6= u,

brssu = −πru(1 − 2πrs) − πrsπru(1 − 2πrs)/πrk − πrsπru(1 − 2πru)/πrk

+ 2πrsπru

∑

w∈S\{s,u}
πrw/πrk

= −πru(1 − 2πrs) − 2πrsπru/πrk + 2πrsπru(1 − πrk)/πrk

= −πru ,
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◮ for v = u but v 6= s,

brsuu = −πrsπru(1 − 2πrs)/πrk − πrs(1 − 2πru) − πrsπru(1 − 2πru)/πrk

+ 2πrsπru

∑

w∈S\{s,u}
πrw/πrk

= −πrs

because this expression can be obtained from the expression of brssu by inter-
changing u and s.

◮ for v 6= s, v 6= u and s 6= u,

brsvu = −πrsπru(1 − 2πrs)/πrk − πrsπru(1 − 2πru)/πrk + 2πrsπru + 2πrsπruπrv/πrk

2πrsπru

∑

w∈S\{s,u,v}
πrw

= −2πrsπru/πrk + 2πrsπru + 2πruπrs(1 − πrk)/πrk

= 0 .

Thus, for s ∈ S

Brs =





















−πrs 0 . . . 0 . . . 0
0 −πrs . . . 0 . . . 0
...

...
. . .

...
...

−πr1 −πr2 . . . 1 − 2πrs . . . −πrq
...

...
...

. . .
...

0 0 . . . 0 . . . −πrs





















,

where 1 − 2πrs is the s-th diagonal element of Brs. So, by (B.16) we have

trace{HrW
−1
r Krs} = (1 − 2πrs)hrss +

∑

v∈S\{s}
hrsvbrsvs +

∑

u∈S\{s}
hrusbrssu

+
∑

u∈S\{s}
hruubrsuu +

q
∑

u,v=1
u 6=v,v 6=s,u 6=s

hruvbrsvu

= hrss −
∑

u∈S

πruhrus − πrs traceHr .

Substituting in (B.13) we obtain the modified scores expressed in terms of the elements
of Hr,

U∗
t (γ) =

∑

r

q
∑

s=1

[

yrs +
1

2
hrss −

(

mr +
1

2
traceHr

)

πrs −
1

2

q
∑

u=1

πruhrus

]

zrst ,

for t = 1, . . . , pq.
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B.6 Proof of theorem 4.3.1

Note that H̃r is invariant under the choice of either (γ, φ) or (γ, τ) parameterization, since
the transformation (γ, φ) → (γ, τ) is invertible. For our purposes, it is more convenient to
work in the (γ, τ) parameterization. Thus

H̃r = Z∗
r F̃

−1Z∗T
r W̃r , (B.17)

with W̃r = diag {µrs; s = 1, . . . , k}. Now,

Z∗
r = [D (η̃r; γ) |D (η̃r; τ)] = [D1,r|D2,r] ,

where, η̃r = (η̃r1, . . . , η̃rk), D
T
1,r = [ZT

r |0p] − [LT
q ⊗ (ZT

r πr)|ZT
r πr] is a pq × k matrix

with 0p and Lq a p × 1 vector of zeros and a q × 1 vector of ones, respectively, and
πr = (µr1/τr, . . . , µrq/τr)

T . Further, D2,r is a k × n matrix of zeros with the elements of
its r-th column equal to τ−1

r . Also,

F̃ =

[

F̃γ

F̃τ

]

,

where F̃γ is the Fisher information on γ and F̃τ = diag
{

mr/τ
2
r ; r = 1, . . . , n

}

. Palmgren

(1981) showed that if we restrict the parameter space by τr = mr, F̃γ = Fγ , where Fγ is
the Fisher information on γ for the corresponding multinomial logistic regression model.
So, on the restricted parameter space, we have

H̃r = D1,rF
−1
γ DT

1,rW̃r +D2,r F̃
−1
τ

∣

∣

∣

τr=mr

DT
2,rW̃r . (B.18)

For the second summand of the above equation we have that

D2,r F̃
−1
τ

∣

∣

∣

τr=mr

DT
2,rW̃r =







πr1 πr2 . . . πrk
...

...
...

...
πr1 πr2 . . . πrk






. (B.19)

For the first summand we get

D1,rF
−1
γ DT

1,rW̃r = A1,r −A2,r −AT
2,r +A3,r (B.20)

where

A1,r =

[

ZrF
−1
γ ZT

r 0q

0T
q 0

]

=

[

HrW
−1
r 0q

0T
q 0

]

,

A2,r =

[

LT
k ⊗

(

ZrF
−1
γ ZT

r πr

)

0T
k

]

=

[

LT
k ⊗

(

HrW
−1
r πr

)

0T
k

]

and

A3,r = (πT
r ZrF

−1
γ ZT

r πr)Jk = (πT
r HrW

−1
r πr)Jk
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where Lk is a k × 1 vector of ones, Jk is a k × k matrix of ones and Hr = ZrF
−1
γ ZT

r Wr

is the q × q, r-th diagonal block of the asymmetric hat matrix H for the corresponding
multinomial logistic regression model. Substituting (B.19) and (B.20) in (B.18) and after
straightforward but tedious calculation, we get the following identities

h̃rsu = πru + hrsu − πru

πrk

q
∑

v=1

hruv +
πru

πrk

q
∑

v,w=1

hrvwπrv ,

h̃rku = πru − πru

πrk

q
∑

v=1

hruv +
πru

πrk

q
∑

v,w=1

hrvwπrv ,

h̃rsk = πrk −
q
∑

u=1

hrsu +

q
∑

u,v=1

hruvπru and

h̃rkk = πrk +

q
∑

s,u=1

hrsuπrs ,

for s, u ∈ {1, . . . , q}. Hence, the diagonal elements of H̃r have the form

h̃rss = πrs + hrss −
πrs

πrk

q
∑

u=1

hrsu +
πrs

πrk

q
∑

u,v=1

hruvπru ,

h̃rkk = πrk +

q
∑

s,u=1

hrsuπrs ,

for s = 1, . . . , q. The proof is completed after showing that

q
∑

u=1

hrusπru =
πrs

πrk

q
∑

u=1

hrsu − πrs

πrk

q
∑

u,v=1

hruvπru . (B.21)

Note that by exploiting the structure of Hr and Zr,

hrsu = xT
r F

−
suxrπru −

q
∑

v=1

xT
r F

−
svxrπruπrv ,

where F−
su is the (s, u)-th, p × p partition of F−1

γ (s, u ∈ {1, . . . , q}). So, substituting in

the left hand side of (B.21) and noting that F−
st = F−

ts , we have that

q
∑

u=1

hrusπru = πrs

q
∑

u=1

xT
r F

−
suxrπru − πrs

q
∑

u,v=1

xT
r F

−
vuxrπruπrv .

The same substitution in the right hand side of (B.21) gives the same result and so (B.21)
is valid.
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Appendix C

Results of complete

enumeration studies for binary

response GLMs

In this appendix we present the results of the complete enumeration studies pursued in
Chapter 4 and Chapter 5. Therein, these results are used to demonstrate that the bias-
reduced (BR) estimates are finite even in cases of complete of quasi-complete separation
of the data points, in which cases the maximum likelihood (ML) estimates are infinite.
The BR estimates in Table C.1, Table C.2, Table C.3 and Table C.4 are obtained using
algorithm 5.2 with the glm function in the R language (R Development Core Team, 2007).
We use the criterion based on the sum of absolute changes on the estimates between
successive iterations (step B.vii).a) in the algorithm) with tolerance ǫ > 10−10. In all cases
convergence was rapid and it required just a few additional iterations from the starting
values that are set in the initialization step of algorithm 5.2. For the ML estimates the
glm function was used with the option

control = glm.control(epsilon = 1e-12, maxit = 100, trace = FALSE) .
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Table C.1: Logistic link. Maximum likelihood estimates, bias-corrected estimates and bias-reduced
estimates for (α, β, γ) to three decimal places, for every possible data configuration in Table 4.1
with m1 = m2 = m3 = m4 = 2.

Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

0 0 0 0 −∞ 0 0 − 0 0 −1.846 0 0
0 0 0 1 −∞ ∞ ∞ − − − −2.869 1.363 1.363
0 0 0 2 −∞ ∞ ∞ − − − −4.504 3.003 3.003
0 0 1 0 −∞ ∞ −∞ − − − −1.505 1.363 −1.363
0 0 1 1 −∞ ∞ 0 − − 0 −1.967 1.967 0
0 0 1 2 −∞ ∞ ∞ − − − −2.869 3.011 1.363
0 0 2 0 −∞ ∞ −∞ − − − −1.501 3.003 −3.003
0 0 2 1 −∞ ∞ −∞ − − − −1.505 3.011 −1.363
0 0 2 2 −∞ ∞ 0 − − 0 −1.846 3.692 0
0 1 0 0 −∞ −∞ ∞ − − − −1.505 −1.363 1.363
0 1 0 1 −∞ 0 ∞ − 0 − −1.967 0 1.967
0 1 0 2 −∞ ∞ ∞ − − − −2.869 1.363 3.011
0 1 1 0 −1.099 0 0 −0.599 0 0 −0.762 0 0
0 1 1 1 −1.781 1.187 1.187 −0.944 0.63 0.63 −1.207 0.804 0.804
0 1 1 2 −∞ ∞ ∞ − − − −1.967 1.967 1.967
0 1 2 0 −0.594 1.187 −1.187 −0.315 0.63 −0.63 −0.402 0.804 −0.804
0 1 2 1 −1.099 2.197 0 −0.599 1.197 0 −0.762 1.524 0
0 1 2 2 −∞ ∞ ∞ − − − −1.505 3.011 1.363
0 2 0 0 −∞ −∞ ∞ − − − −1.501 −3.003 3.003
0 2 0 1 −∞ −∞ ∞ − − − −1.505 −1.363 3.011
0 2 0 2 −∞ 0 ∞ − 0 − −1.846 0 3.692
0 2 1 0 −0.594 −1.187 1.187 −0.315 −0.63 0.63 −0.402 −0.804 0.804
0 2 1 1 −1.099 0 2.197 −0.599 0 1.197 −0.762 0 1.524
0 2 1 2 −∞ ∞ ∞ − − − −1.505 1.363 3.011
0 2 2 0 0 0 0 0 0 0 0 0 0
0 2 2 1 −0.594 1.187 1.187 −0.315 0.63 0.63 −0.402 0.804 0.804
0 2 2 2 −∞ ∞ ∞ − − − −1.501 3.003 3.003
1 0 0 0 0 −∞ −∞ 0 − − −0.142 −1.363 −1.363
1 0 0 1 −1.099 0 0 −0.599 0 0 −0.762 0 0
1 0 0 2 −1.781 1.187 1.187 −0.944 0.63 0.63 −1.207 0.804 0.804
1 0 1 0 0 0 −∞ 0 0 − 0 0 −1.967
1 0 1 1 −0.594 1.187 −1.187 −0.315 0.63 −0.63 −0.402 0.804 −0.804
1 0 1 2 −1.099 2.197 0 −0.599 1.197 0 −0.762 1.524 0
1 0 2 0 0 ∞ −∞ 0 − − 0.142 1.363 −3.011
1 0 2 1 0 ∞ −∞ 0 − − 0 1.967 −1.967
1 0 2 2 0 ∞ −∞ 0 − − −0.142 3.011 −1.363
1 1 0 0 0 −∞ 0 0 − 0 0 −1.967 0
1 1 0 1 −0.594 −1.187 1.187 −0.315 −0.63 0.63 −0.402 −0.804 0.804

continued on next page
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Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

1 1 0 2 −1.099 0 2.197 −0.599 0 1.197 −0.762 0 1.524
1 1 1 0 0.594 −1.187 −1.187 0.315 −0.63 −0.63 0.402 −0.804 −0.804
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 2 −0.594 1.187 1.187 −0.315 0.63 0.63 −0.402 0.804 0.804
1 1 2 0 1.099 0 −2.197 0.599 0 −1.197 0.762 0 −1.524
1 1 2 1 0.594 1.187 −1.187 0.315 0.63 −0.63 0.402 0.804 −0.804
1 1 2 2 0 ∞ 0 0 − 0 0 1.967 0
1 2 0 0 0 −∞ ∞ 0 − − 0.142 −3.011 1.363
1 2 0 1 0 −∞ ∞ 0 − − 0 −1.967 1.967
1 2 0 2 0 −∞ ∞ 0 − − −0.142 −1.363 3.011
1 2 1 0 1.099 −2.197 0 0.599 −1.197 0 0.762 −1.524 0
1 2 1 1 0.594 −1.187 1.187 0.315 −0.63 0.63 0.402 −0.804 0.804
1 2 1 2 0 0 ∞ 0 0 − 0 0 1.967
1 2 2 0 1.781 −1.187 −1.187 0.944 −0.63 −0.63 1.207 −0.804 −0.804
1 2 2 1 1.099 0 0 0.599 0 0 0.762 0 0
1 2 2 2 0 ∞ ∞ 0 − − 0.142 1.363 1.363
2 0 0 0 ∞ −∞ −∞ − − − 1.501 −3.003 −3.003
2 0 0 1 0.594 −1.187 −1.187 0.315 −0.63 −0.63 0.402 −0.804 −0.804
2 0 0 2 0 0 0 0 0 0 0 0 0
2 0 1 0 ∞ −∞ −∞ − − − 1.506 −1.363 −3.011
2 0 1 1 1.099 0 −2.197 0.599 0 −1.197 0.762 0 −1.524
2 0 1 2 0.594 1.187 −1.187 0.315 0.63 −0.63 0.402 0.804 −0.804
2 0 2 0 ∞ 0 −∞ − 0 − 1.846 0 −3.692
2 0 2 1 ∞ ∞ −∞ − − − 1.505 1.363 −3.011
2 0 2 2 ∞ ∞ −∞ − − − 1.501 3.003 −3.003
2 1 0 0 ∞ −∞ −∞ − − − 1.506 −3.011 −1.363
2 1 0 1 1.099 −2.197 0 0.599 −1.197 0 0.762 −1.524 0
2 1 0 2 0.594 −1.187 1.187 0.315 −0.63 0.63 0.402 −0.804 0.804
2 1 1 0 ∞ −∞ −∞ − − − 1.967 −1.967 −1.967
2 1 1 1 1.781 −1.187 −1.187 0.944 −0.63 −0.63 1.207 −0.804 −0.804
2 1 1 2 1.099 0 0 0.599 0 0 0.762 0 0
2 1 2 0 ∞ −∞ −∞ − − − 2.869 −1.363 −3.011
2 1 2 1 ∞ 0 −∞ − 0 − 1.967 0 −1.967
2 1 2 2 ∞ ∞ −∞ − − − 1.505 1.363 −1.363
2 2 0 0 ∞ −∞ 0 − − 0 1.846 −3.692 0
2 2 0 1 ∞ −∞ ∞ − − − 1.505 −3.011 1.363
2 2 0 2 ∞ −∞ ∞ − − − 1.501 −3.003 3.003
2 2 1 0 ∞ −∞ −∞ − − − 2.869 −3.011 −1.363
2 2 1 1 ∞ −∞ 0 − − 0 1.967 −1.967 0
2 2 1 2 ∞ −∞ ∞ − − − 1.505 −1.363 1.363
2 2 2 0 ∞ −∞ −∞ − − − 4.504 −3.003 −3.003
2 2 2 1 ∞ −∞ −∞ − − − 2.869 −1.363 −1.363
2 2 2 2 ∞ 0 0 − 0 0 1.846 0 0
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Table C.2: Probit link. Maximum likelihood estimates, bias-corrected estimates and bias-reduced
estimates for (α, β, γ) to three decimal places, for every possible data configuration in Table 4.1
with m1 = m2 = m3 = m4 = 2.

Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

0 0 0 0 −∞ 0 0 − 0 0 −1.189 0 0
0 0 0 1 −∞ ∞ ∞ − − − −1.688 0.765 0.765
0 0 0 2 −∞ ∞ ∞ − − − −2.817 1.878 1.878
0 0 1 0 −∞ ∞ −∞ − − − −0.922 0.765 −0.765
0 0 1 1 −∞ ∞ 0 − − 0 −1.278 1.278 0
0 0 1 2 −∞ ∞ ∞ − − − −1.688 1.845 0.765
0 0 2 0 −∞ ∞ −∞ − − − −0.939 1.878 −1.878
0 0 2 1 −∞ ∞ −∞ − − − −0.922 1.845 −0.765
0 0 2 2 −∞ ∞ 0 − − 0 −1.189 2.378 0
0 1 0 0 −∞ −∞ ∞ − − − −0.922 −0.765 0.765
0 1 0 1 −∞ 0 ∞ − 0 − −1.278 0 1.278
0 1 0 2 −∞ ∞ ∞ − − − −1.688 0.765 1.845
0 1 1 0 −0.674 0 0 −0.44 0 0 −0.504 0 0
0 1 1 1 −1.136 0.757 0.757 −0.696 0.464 0.464 −0.806 0.538 0.538
0 1 1 2 −∞ ∞ ∞ − − − −1.232 1.232 1.232
0 1 2 0 −0.325 0.649 −0.649 −0.207 0.414 −0.414 −0.248 0.497 −0.497
0 1 2 1 −0.674 1.349 0 −0.44 0.879 0 −0.504 1.008 0
0 1 2 2 −∞ ∞ ∞ − − − −0.922 1.845 0.765
0 2 0 0 −∞ −∞ ∞ − − − −0.939 −1.878 1.878
0 2 0 1 −∞ −∞ ∞ − − − −0.922 −0.765 1.845
0 2 0 2 −∞ 0 ∞ − 0 − −1.189 0 2.378
0 2 1 0 −0.325 −0.649 0.649 −0.207 −0.414 0.414 −0.248 −0.497 0.497
0 2 1 1 −0.674 0 1.349 −0.44 0 0.879 −0.504 0 1.008
0 2 1 2 −∞ ∞ ∞ − − − −0.922 0.765 1.845
0 2 2 0 0 0 0 0 0 0 0 0 0
0 2 2 1 −0.325 0.649 0.649 −0.207 0.414 0.414 −0.248 0.497 0.497
0 2 2 2 −∞ ∞ ∞ − − − −0.939 1.878 1.878
1 0 0 0 0 −∞ −∞ 0 − − −0.157 −0.765 −0.765
1 0 0 1 −0.674 0 0 −0.44 0 0 −0.504 0 0
1 0 0 2 −0.974 0.649 0.649 −0.621 0.414 0.414 −0.745 0.497 0.497
1 0 1 0 0 0 −∞ 0 0 − 0 0 −1.232
1 0 1 1 −0.379 0.757 −0.757 −0.232 0.464 −0.464 −0.269 0.538 −0.538
1 0 1 2 −0.674 1.349 0 −0.44 0.879 0 −0.504 1.008 0
1 0 2 0 0 ∞ −∞ 0 − − 0.157 0.765 −1.845
1 0 2 1 0 ∞ −∞ 0 − − 0 1.278 −1.278
1 0 2 2 0 ∞ −∞ 0 − − −0.157 1.845 −0.765
1 1 0 0 0 −∞ 0 0 − 0 0 −1.232 0
1 1 0 1 −0.379 −0.757 0.757 −0.232 −0.464 0.464 −0.269 −0.538 0.538
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Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

0 0 0 0 −∞ 0 0 − 0 0 −1.846 0 0
0 0 0 1 −∞ ∞ ∞ − − − −2.852 1.266 1.266
0 0 0 2 −∞ ∞ ∞ − − − −3.869 2.304 2.304
0 0 1 0 −∞ ∞ −∞ − − − −1.586 1.266 −1.266
0 0 1 1 −∞ ∞ 0 − − 0 −2.043 1.78 0
0 0 1 2 −∞ ∞ ∞ − − − −2.709 2.479 0.985
0 0 2 0 −∞ ∞ −∞ − − − −1.565 2.304 −2.304
0 0 2 1 −∞ ∞ −∞ − − − −1.723 2.479 −0.985
0 0 2 2 −∞ ∞ 0 − − 0 −2.063 2.85 0
0 1 0 0 −∞ −∞ ∞ − − − −1.586 −1.266 1.266
0 1 0 1 −∞ 0 ∞ − 0 − −2.043 0 1.78
0 1 0 2 −∞ ∞ ∞ − − − −2.709 0.985 2.479
0 1 1 0 −1.246 0 0 −0.708 0 0 −0.879 0 0
0 1 1 1 −1.673 0.82 0.82 −1.013 0.495 0.495 −1.198 0.589 0.589
0 1 1 2 −∞ ∞ ∞ − − − −1.693 1.297 1.297
0 1 2 0 −0.875 1.316 −1.316 −0.514 0.759 −0.759 −0.627 0.859 −0.859
0 1 2 1 −1.08 1.709 −0.449 −0.693 1.032 −0.238 −0.815 1.193 −0.233
0 1 2 2 −∞ ∞ ∞ − − − −1.155 1.716 0.505
0 2 0 0 −∞ −∞ ∞ − − − −1.565 −2.304 2.304
0 2 0 1 −∞ −∞ ∞ − − − −1.723 −0.985 2.479
0 2 0 2 −∞ 0 ∞ − 0 − −2.063 0 2.85
0 2 1 0 −0.875 −1.316 1.316 −0.514 −0.759 0.759 −0.627 −0.859 0.859
0 2 1 1 −1.08 −0.449 1.709 −0.693 −0.238 1.032 −0.815 −0.233 1.193
0 2 1 2 −∞ ∞ ∞ − − − −1.155 0.505 1.716
0 2 2 0 −0.367 0 0 −0.247 0 0 −0.276 0 0
0 2 2 1 −0.524 0.494 0.494 −0.351 0.322 0.322 −0.423 0.399 0.399
0 2 2 2 −∞ ∞ ∞ − − − −0.732 1.048 1.048
1 0 0 0 −0.367 −∞ −∞ −0.367 − − −0.32 −1.266 −1.266
1 0 0 1 −1.246 0 0 −0.708 0 0 −0.879 0 0
1 0 0 2 −2.191 1.316 1.316 −1.273 0.759 0.759 −1.487 0.859 0.859
1 0 1 0 −0.367 0 −∞ −0.367 0 − −0.263 0 −1.78
1 0 1 1 −0.852 0.82 −0.82 −0.518 0.495 −0.495 −0.609 0.589 −0.589
1 0 1 2 −1.529 1.709 0.449 −0.93 1.032 0.238 −1.047 1.193 0.233
1 0 2 0 −0.367 ∞ −∞ −0.367 − − −0.229 0.985 −2.479
1 0 2 1 −0.367 ∞ −∞ −0.367 − − −0.396 1.297 −1.297
1 0 2 2 −0.367 ∞ −∞ −0.367 − − −0.65 1.716 −0.505
1 1 0 0 −0.367 −∞ 0 −0.367 − 0 −0.263 −1.78 0
1 1 0 1 −0.852 −0.82 0.82 −0.518 −0.495 0.495 −0.609 −0.589 0.589
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Table C.3: Complementary log-log link. Maximum likelihood estimates, bias-corrected estimates
and bias-reduced estimates for (α, β, γ) to three decimal places, for every possible data configuration
in Table 4.1 with m1 = m2 = m3 = m4 = 2.

Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

0 0 0 0 −∞ 0 0 − 0 0 −1.846 0 0
0 0 0 1 −∞ ∞ ∞ − − − −2.852 1.266 1.266
0 0 0 2 −∞ ∞ ∞ − − − −3.869 2.304 2.304
0 0 1 0 −∞ ∞ −∞ − − − −1.586 1.266 −1.266
0 0 1 1 −∞ ∞ 0 − − 0 −2.043 1.78 0
0 0 1 2 −∞ ∞ ∞ − − − −2.709 2.479 0.985
0 0 2 0 −∞ ∞ −∞ − − − −1.565 2.304 −2.304
0 0 2 1 −∞ ∞ −∞ − − − −1.723 2.479 −0.985
0 0 2 2 −∞ ∞ 0 − − 0 −2.063 2.85 0
0 1 0 0 −∞ −∞ ∞ − − − −1.586 −1.266 1.266
0 1 0 1 −∞ 0 ∞ − 0 − −2.043 0 1.78
0 1 0 2 −∞ ∞ ∞ − − − −2.709 0.985 2.479
0 1 1 0 −1.246 0 0 −0.708 0 0 −0.879 0 0
0 1 1 1 −1.673 0.82 0.82 −1.013 0.495 0.495 −1.198 0.589 0.589
0 1 1 2 −∞ ∞ ∞ − − − −1.693 1.297 1.297
0 1 2 0 −0.875 1.316 −1.316 −0.514 0.759 −0.759 −0.627 0.859 −0.859
0 1 2 1 −1.08 1.709 −0.449 −0.693 1.032 −0.238 −0.815 1.193 −0.233
0 1 2 2 −∞ ∞ ∞ − − − −1.155 1.716 0.505
0 2 0 0 −∞ −∞ ∞ − − − −1.565 −2.304 2.304
0 2 0 1 −∞ −∞ ∞ − − − −1.723 −0.985 2.479
0 2 0 2 −∞ 0 ∞ − 0 − −2.063 0 2.85
0 2 1 0 −0.875 −1.316 1.316 −0.514 −0.759 0.759 −0.627 −0.859 0.859
0 2 1 1 −1.08 −0.449 1.709 −0.693 −0.238 1.032 −0.815 −0.233 1.193
0 2 1 2 −∞ ∞ ∞ − − − −1.155 0.505 1.716
0 2 2 0 −0.367 0 0 −0.247 0 0 −0.276 0 0
0 2 2 1 −0.524 0.494 0.494 −0.351 0.322 0.322 −0.423 0.399 0.399
0 2 2 2 −∞ ∞ ∞ − − − −0.732 1.048 1.048
1 0 0 0 −0.367 −∞ −∞ −0.367 − − −0.32 −1.266 −1.266
1 0 0 1 −1.246 0 0 −0.708 0 0 −0.879 0 0
1 0 0 2 −2.191 1.316 1.316 −1.273 0.759 0.759 −1.487 0.859 0.859
1 0 1 0 −0.367 0 −∞ −0.367 0 − −0.263 0 −1.78
1 0 1 1 −0.852 0.82 −0.82 −0.518 0.495 −0.495 −0.609 0.589 −0.589
1 0 1 2 −1.529 1.709 0.449 −0.93 1.032 0.238 −1.047 1.193 0.233
1 0 2 0 −0.367 ∞ −∞ −0.367 − − −0.229 0.985 −2.479
1 0 2 1 −0.367 ∞ −∞ −0.367 − − −0.396 1.297 −1.297
1 0 2 2 −0.367 ∞ −∞ −0.367 − − −0.65 1.716 −0.505
1 1 0 0 −0.367 −∞ 0 −0.367 − 0 −0.263 −1.78 0
1 1 0 1 −0.852 −0.82 0.82 −0.518 −0.495 0.495 −0.609 −0.589 0.589
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Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

1 1 0 2 −1.529 0.449 1.709 −0.93 0.238 1.032 −1.047 0.233 1.193
1 1 1 0 −0.032 −0.82 −0.82 −0.024 −0.495 −0.495 −0.02 −0.589 −0.589
1 1 1 1 −0.367 0 0 −0.247 0 0 −0.276 0 0
1 1 1 2 −0.936 0.941 0.941 −0.541 0.49 0.49 −0.634 0.615 0.615
1 1 2 0 0.18 0.449 −1.709 0.102 0.238 −1.032 0.146 0.233 −1.193
1 1 2 1 0.005 0.941 −0.941 −0.05 0.49 −0.49 −0.019 0.615 −0.615
1 1 2 2 −0.367 ∞ 0 −0.367 − 0 −0.278 1.119 0
1 2 0 0 −0.367 −∞ ∞ −0.367 − − −0.229 −2.479 0.985
1 2 0 1 −0.367 −∞ ∞ −0.367 − − −0.396 −1.297 1.297
1 2 0 2 −0.367 −∞ ∞ −0.367 − − −0.65 −0.505 1.716
1 2 1 0 0.18 −1.709 0.449 0.102 −1.032 0.238 0.146 −1.193 0.233
1 2 1 1 0.005 −0.941 0.941 −0.05 −0.49 0.49 −0.019 −0.615 0.615
1 2 1 2 −0.367 0 ∞ −0.367 0 − −0.278 0 1.119
1 2 2 0 0.464 −0.494 −0.494 0.292 −0.322 −0.322 0.375 −0.399 −0.399
1 2 2 1 0.327 0 0 0.214 0 0 0.244 0 0
1 2 2 2 −0.367 ∞ ∞ −0.367 − − 0.007 0.563 0.563
2 0 0 0 ∞ −∞ −∞ − − − 0.738 −2.304 −2.304
2 0 0 1 0.44 −1.316 −1.316 0.244 −0.759 −0.759 0.232 −0.859 −0.859
2 0 0 2 −0.367 0 0 −0.247 0 0 −0.276 0 0
2 0 1 0 ∞ −∞ −∞ − − − 0.756 −0.985 −2.479
2 0 1 1 0.629 −0.449 −1.709 0.34 −0.238 −1.032 0.378 −0.233 −1.193
2 0 1 2 −0.03 0.494 −0.494 −0.029 0.322 −0.322 −0.024 0.399 −0.399
2 0 2 0 ∞ 0 −∞ − 0 − 0.787 0 −2.85
2 0 2 1 ∞ ∞ −∞ − − − 0.561 0.505 −1.716
2 0 2 2 ∞ ∞ −∞ − − − 0.316 1.048 −1.048
2 1 0 0 ∞ −∞ −∞ − − − 0.756 −2.479 −0.985
2 1 0 1 0.629 −1.709 −0.449 0.34 −1.032 −0.238 0.378 −1.193 −0.233
2 1 0 2 −0.03 −0.494 0.494 −0.029 −0.322 0.322 −0.024 −0.399 0.399
2 1 1 0 ∞ −∞ −∞ − − − 0.9 −1.297 −1.297
2 1 1 1 0.946 −0.941 −0.941 0.44 −0.49 −0.49 0.595 −0.615 −0.615
2 1 1 2 0.327 0 0 0.214 0 0 0.244 0 0
2 1 2 0 ∞ −∞ −∞ − − − 1.066 −0.505 −1.716
2 1 2 1 ∞ 0 −∞ − 0 − 0.841 0 −1.119
2 1 2 2 ∞ ∞ −∞ − − − 0.569 0.563 −0.563
2 2 0 0 ∞ −∞ 0 − − 0 0.787 −2.85 0
2 2 0 1 ∞ −∞ ∞ − − − 0.561 −1.716 0.505
2 2 0 2 ∞ −∞ ∞ − − − 0.316 −1.048 1.048
2 2 1 0 ∞ −∞ −∞ − − − 1.066 −1.716 −0.505
2 2 1 1 ∞ −∞ 0 − − 0 0.841 −1.119 0
2 2 1 2 ∞ −∞ ∞ − − − 0.569 −0.563 0.563
2 2 2 0 ∞ −∞ −∞ − − − 1.364 −1.048 −1.048
2 2 2 1 ∞ −∞ −∞ − − − 1.132 −0.563 −0.563
2 2 2 2 ∞ 0 0 − 0 0 0.848 0 0
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Table C.4: Log-log link. Maximum likelihood estimates, bias-corrected estimates and bias-reduced
estimates for (α, β, γ) to three decimal places, for every possible data configuration in Table 4.1
with m1 = m2 = m3 = m4 = 2.

Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

0 0 0 0 −∞ 0 0 − 0 0 −0.848 0 0
0 0 0 1 −∞ ∞ ∞ − − − −1.132 0.563 0.563
0 0 0 2 −∞ ∞ ∞ − − − −1.365 1.049 1.049
0 0 1 0 −∞ ∞ −∞ − − − −0.569 0.563 −0.563
0 0 1 1 −∞ ∞ 0 − − 0 −0.841 1.119 0
0 0 1 2 −∞ ∞ ∞ − − − −1.066 1.716 0.505
0 0 2 0 −∞ ∞ −∞ − − − −0.316 1.049 −1.049
0 0 2 1 −∞ ∞ −∞ − − − −0.561 1.716 −0.505
0 0 2 2 −∞ ∞ 0 − − 0 −0.787 2.85 0
0 1 0 0 −∞ −∞ ∞ − − − −0.569 −0.563 0.563
0 1 0 1 −∞ 0 ∞ − 0 − −0.841 0 1.119
0 1 0 2 −∞ ∞ ∞ − − − −1.066 0.505 1.716
0 1 1 0 −0.327 0 0 −0.214 0 0 −0.244 0 0
0 1 1 1 −0.946 0.941 0.941 −0.44 0.49 0.49 −0.595 0.615 0.615
0 1 1 2 −∞ ∞ ∞ − − − −0.9 1.297 1.297
0 1 2 0 0.03 0.494 −0.494 0.029 0.322 −0.322 0.024 0.399 −0.399
0 1 2 1 −0.629 1.709 0.449 −0.34 1.032 0.238 −0.378 1.193 0.233
0 1 2 2 −∞ ∞ ∞ − − − −0.756 2.479 0.985
0 2 0 0 −∞ −∞ ∞ − − − −0.316 −1.049 1.049
0 2 0 1 −∞ −∞ ∞ − − − −0.561 −0.505 1.716
0 2 0 2 −∞ 0 ∞ − 0 − −0.787 0 2.85
0 2 1 0 0.03 −0.494 0.494 0.029 −0.322 0.322 0.024 −0.399 0.399
0 2 1 1 −0.629 0.449 1.709 −0.34 0.238 1.032 −0.378 0.233 1.193
0 2 1 2 −∞ ∞ ∞ − − − −0.756 0.985 2.479
0 2 2 0 0.367 0 0 0.247 0 0 0.276 0 0
0 2 2 1 −0.44 1.316 1.316 −0.244 0.759 0.759 −0.232 0.859 0.859
0 2 2 2 −∞ ∞ ∞ − − − −0.738 2.304 2.304
1 0 0 0 0.367 −∞ −∞ 0.367 − − −0.007 −0.563 −0.563
1 0 0 1 −0.327 0 0 −0.214 0 0 −0.244 0 0
1 0 0 2 −0.464 0.494 0.494 −0.292 0.322 0.322 −0.375 0.399 0.399
1 0 1 0 0.367 0 −∞ 0.367 0 − 0.278 0 −1.119
1 0 1 1 −0.005 0.941 −0.941 0.05 0.49 −0.49 0.019 0.615 −0.615
1 0 1 2 −0.18 1.709 −0.449 −0.102 1.032 −0.238 −0.146 1.193 −0.233
1 0 2 0 0.367 ∞ −∞ 0.367 − − 0.65 0.505 −1.716
1 0 2 1 0.367 ∞ −∞ 0.367 − − 0.396 1.297 −1.297
1 0 2 2 0.367 ∞ −∞ 0.367 − − 0.229 2.479 −0.985
1 1 0 0 0.367 −∞ 0 0.367 − 0 0.278 −1.119 0
1 1 0 1 −0.005 −0.941 0.941 0.05 −0.49 0.49 0.019 −0.615 0.615

continued on next page
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Success Maximum Likelihood Bias-corrected Bias-reduced
Counts estimates estimates estimates

y1 y2 y3 y4 α̂ β̂ γ̂ α̂c β̂c γ̂c α̃ β̃ γ̃

1 1 0 2 −0.18 −0.449 1.709 −0.102 −0.238 1.032 −0.146 −0.233 1.193
1 1 1 0 0.936 −0.941 −0.941 0.541 −0.49 −0.49 0.634 −0.615 −0.615
1 1 1 1 0.367 0 0 0.247 0 0 0.276 0 0
1 1 1 2 0.032 0.82 0.82 0.024 0.495 0.495 0.02 0.589 0.589
1 1 2 0 1.529 −0.449 −1.709 0.93 −0.238 −1.032 1.047 −0.233 −1.193
1 1 2 1 0.852 0.82 −0.82 0.518 0.495 −0.495 0.609 0.589 −0.589
1 1 2 2 0.367 ∞ 0 0.367 − 0 0.263 1.78 0
1 2 0 0 0.367 −∞ ∞ 0.367 − − 0.65 −1.716 0.505
1 2 0 1 0.367 −∞ ∞ 0.367 − − 0.396 −1.297 1.297
1 2 0 2 0.367 −∞ ∞ 0.367 − − 0.229 −0.985 2.479
1 2 1 0 1.529 −1.709 −0.449 0.93 −1.032 −0.238 1.047 −1.193 −0.233
1 2 1 1 0.852 −0.82 0.82 0.518 −0.495 0.495 0.609 −0.589 0.589
1 2 1 2 0.367 0 ∞ 0.367 0 − 0.263 0 1.78
1 2 2 0 2.191 −1.316 −1.316 1.273 −0.759 −0.759 1.487 −0.859 −0.859
1 2 2 1 1.246 0 0 0.708 0 0 0.879 0 0
1 2 2 2 0.367 ∞ ∞ 0.367 − − 0.32 1.266 1.266
2 0 0 0 ∞ −∞ −∞ − − − 0.732 −1.049 −1.049
2 0 0 1 0.524 −0.494 −0.494 0.351 −0.322 −0.322 0.423 −0.399 −0.399
2 0 0 2 0.367 0 0 0.247 0 0 0.276 0 0
2 0 1 0 ∞ −∞ −∞ − − − 1.155 −0.505 −1.716
2 0 1 1 1.08 0.449 −1.709 0.693 0.238 −1.032 0.815 0.233 −1.193
2 0 1 2 0.875 1.316 −1.316 0.514 0.759 −0.759 0.627 0.859 −0.859
2 0 2 0 ∞ 0 −∞ − 0 − 2.063 0 −2.85
2 0 2 1 ∞ ∞ −∞ − − − 1.723 0.985 −2.479
2 0 2 2 ∞ ∞ −∞ − − − 1.565 2.304 −2.304
2 1 0 0 ∞ −∞ −∞ − − − 1.155 −1.716 −0.505
2 1 0 1 1.08 −1.709 0.449 0.693 −1.032 0.238 0.815 −1.193 0.233
2 1 0 2 0.875 −1.316 1.316 0.514 −0.759 0.759 0.627 −0.859 0.859
2 1 1 0 ∞ −∞ −∞ − − − 1.693 −1.297 −1.297
2 1 1 1 1.673 −0.82 −0.82 1.013 −0.495 −0.495 1.198 −0.589 −0.589
2 1 1 2 1.246 0 0 0.708 0 0 0.879 0 0
2 1 2 0 ∞ −∞ −∞ − − − 2.709 −0.985 −2.479
2 1 2 1 ∞ 0 −∞ − 0 − 2.043 0 −1.78
2 1 2 2 ∞ ∞ −∞ − − − 1.586 1.266 −1.266
2 2 0 0 ∞ −∞ 0 − − 0 2.063 −2.85 0
2 2 0 1 ∞ −∞ ∞ − − − 1.723 −2.479 0.985
2 2 0 2 ∞ −∞ ∞ − − − 1.565 −2.304 2.304
2 2 1 0 ∞ −∞ −∞ − − − 2.709 −2.479 −0.985
2 2 1 1 ∞ −∞ 0 − − 0 2.043 −1.78 0
2 2 1 2 ∞ −∞ ∞ − − − 1.586 −1.266 1.266
2 2 2 0 ∞ −∞ −∞ − − − 3.869 −2.304 −2.304
2 2 2 1 ∞ −∞ −∞ − − − 2.852 −1.266 −1.266
2 2 2 2 ∞ 0 0 − 0 0 1.846 0 0
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