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Mixed effects logistic regression

Data

Response vectors y1, ..., Yk, ¥i = (Vit,- -+, Vi) € {0,1}7
Covariate matrices V4, ..., Vi, with V; € RM>s

Model
Yi,..., Y, conditionally independent with

Yij | ui ~ Bern(pjj) with log 1 Hij - == x,-jTﬁ + z,-JTu,-

My

U ~N(0g,%) (i=1,....kj=1,....n),

B e RP. Y € RI®A
xjj, zjj are the jth row of matrices X;, Z;, respectively, constructed from
columns of V;
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Maximum approximate likelihood estimation
Likelihood about 5 and

Ty—1

k nl u.' X i
L(B.F) ox det(E) "/ H/ H N?(l — ) Ve T dy;
i=1 Ja j=1

Maximum approximate likelihood estimator

3,% L(B,x
P.x € argmax L(5,X)
typically after numerically approximating L(5, %)

Certain data configurations and approximation methods result in
estimates on the boundary of the parameter space:

m infinite or zero estimated variances, or, more generally, singular
estimates of X

m estimates of § with infinite components
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Motivating example
Culcita data (McKeon et al., 2012; worked examples of Bolker, 2015)

Temporal block

Treatment 1 2 3 4 5 6 7 8 9 10

none 1 11 11 11 11 11 11 1,1 1,1 1,0
crabs 00 00 00 00 11 11 11 11 11 11
shrimp 00 00 00 00 01 11 11 11 11 11
both 00 00 00 00 00 O01 11 11 11 11

Coral-eating sea stars (Culcita) attacking coral harbouring protective
symbionts (crabs, shrimp, both, none)

80 observations on whether predation was present (1) or not (0)

Complete randomized block design: 4 treatments, 10 temporal blocks, 2
repetitions per block-treatment combination
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Motivating example
Culcita data (McKeon et al., 2012; worked examples of Bolker, 2015)

Temporal block

Treatment 1 2 3 4 5 6 7 8 9 10

none 1 11 11 11 11 11 11 11 11 10
crabs 00 00 00 00 11 11 11 11 11 1,1
shrimp 00 00 00 00 01 11 11 11 11 11
both 00 00 00 00 00 O1 11 11 11 11

Predation more prevalent with increasing block number
Predation suppressed when either crabs or shrimp present

Atypical observation: no predation with no symbionts in block 10
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Motivating example

Model

Mixed effects logistic regression model with one random intercept per
block to associate predation with treatment effects while accounting for
heterogeneity between blocks

Hij

Yii | ui ~ Bern(uj;) with log 1 - =1 = Po+ Bagy + ui

y

Ui ~N(0,6%) (i=1,...,10;j=1,...,8),

a(j) = [j/2], and (Y1, Yi2) ", (Vis, Yia) T, (Vis, Yie) T, (Yiz, Yis) T
correspond to responses for "none”, "crabs”, "shrimp”, and " both”

Maximum approximate likelihood

Set 81 = 0 (“none” as reference category) for identifiability

Likelihood approximation: 100-point adaptive Gauss-Hermite quadrature
Remove atypical observation

Estimate f3,log o and asymptotic standard errors using the optimx
(Nash, 2014) R package with methods “BFGS” and “CG"



BFGS CG
Bo 15.88 15.38
(10.14) (9.53)
B2 —12.93  —1247
(9.15) (8.56)
B3 1481 —1431
(9.89) (9.27)
Ba -17.71 -17.16
(10.70)  (10.06)
log o 2.31 2.28
(0.64) (0.62)

Large estimated standard errors are
indicative of an almost flat approximate
likelihood around the estimates

B actual value is (+00, —00, —00, —00)

Optimization procedures stopping early at
different points in R° after having
prematurely declared convergence



loannis Kosmidis - Maximum softly-penalized likelihood

Boundary estimates in fixed-effects logistic regression:
Detection

detectseparation R package (K. et al., 2022) provides linear
programming methods of

m Schwendinger et al. (2021) (log-binomial regression)
m Konis (2007) (other binomial-response GLMs)

R> library("detectseparation")

R> culcita_fixed <- glm(predation ~ ttt, data = culcita_none, family = binomial,
+ subset = !(block == 10 & predation == 0 & ttt == "none"))
R> coef(culcita_fixed)

(Intercept) tttcrabs tttshrimp tttboth
2.890372  -2.484907 -2.689701 -3.091042

R> update(culcita_fixed, method = detect_separation)

Implementation: ROI | Solver: lpsolve

Separation: FALSE

Existence of maximum likelihood estimates

(Intercept) tttcrabs  tttshrimp tttboth
0 0 0 0

0: finite value, Inf: infinity, -Inf: -infinity
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Boundary estimates in fixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary

Mean bias reducing adjusted scores
brglm, brglm2, logistf R packages
Firth (1993); K. and Firth (2021)

Median bias reducing adjusted score functions
brglm2 R package
Kenne Pagui et al. (2017); K. et al. (2020)

Weakly informative priors
Gelman et al. (2008)
brms R package
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Boundary estimates in mixed effects logistic regression:
Detection
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Boundary estimates in mixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary
Weakly informative priors for covariance estimation
Chung et al. (2013, 2015)

bglmer R package, which also adds support for default prior penalties to
the fixed effects to avoid boundary through prior-imposed shrinkage



BGLMER[,wishart] ® BGLMER[t,wishartf ® BGLMER[normal,wishart]

[30 . S—
B> —
Bs ————
Ba —
log(o) o

-10 0 10
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Contrasts

Parameterization with “none” as reference category (i.e. £ = 0)
nij = Bo + Baj) + ui
Parameterization with “both” as reference category (i.e. 74 = 0)

Nij = Y0 + Ya(j) + Ui

So,
Yo 1000160
7 000 0 —1| |5
wl=100 10 —1{ |8
Y3 000 1 —1{ B
Y4 0000054

Natural to expect the estimation method to deliver estimators 4 and 3
that respect the above identities, i.e. 5 = Cf3



Contrasts

ML
B B 2l
Bo 15.88
(10.14)
8a —12.93
(9.15)
B3 —14.81
(9.89)
Ba —17.71
(10.70)
log o 2.31 2.31 2.31
(0.64)  (0.64)  (0.64)
" ~1.82  —1.82
(3.92)  (3.92)
" 17.71 17.74
(10.70)  (10.75)
72 4.78 4.78
(3.07)  (3.08)
3 2.89 2.89
(2.27)  (2.27)

BGLMER [normal ,wishart]

B cp Y
Bo 4.90
(2.08)
B2 —2.84
(1.27)
53 —3.44
(1.35)
Ba —4.73
(1.57)
log o 1.54 1.54 1.66
(0.43) (0.43) (0.44)
Yo 0.17 0.57
(1.83) (2.07)
o71 4.73 5.75
(1.57) (1.88)
Y2 1.89 1.26
(1.32)  (1.32)
v3 1.29 0.56
(1.27)  (1.28)
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Simulation study

parameter  value
Bo 5.01
B2 —3.75
B3 —4.36
Ba —5.55
log o 1.26

R = 10000 independent samples

Ignore samples where any of the
m |estimated gradient components| is > 1073, or

m |estimates| or estimated standard errors is > 30



Centred distributions

-10 -5 0

o
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o

method -.- ML -.- bglmer(t] -.- bglmer{n]
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Boundary estimates in mixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary
Weakly informative priors for covariance estimation
Chung et al. (2013, 2015)

bglmer R package, which also adds support for default prior penalties to
the fixed effects
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Boundary estimates in mixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary
Weakly informative priors for covariance estimation
Chung et al. (2013, 2015)

bglmer R package, which also adds support for default prior penalties to
the fixed effects

What prior?



loannis Kosmidis - Maximum softly-penalized likelihood

Boundary estimates in mixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary
Weakly informative priors for covariance estimation
Chung et al. (2013, 2015)

bglmer R package, which also adds support for default prior penalties to
the fixed effects

What prior?

Default prior for random effects variance is 3logo/2
—
no guarding against infinite variance estimates
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Boundary estimates in mixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary

Weakly informative priors for covariance estimation

Chung et al. (2013, 2015)

bglmer R package, which also adds support for default prior penalties to

the fixed effects

What prior?

Default prior for random effects variance is 3logo/2
—

no guarding against infinite variance estimates

How much shrinkage for optimal frequentist properties?
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Boundary estimates in mixed-effects logistic regression:
Alternative estimators

Estimates that are expected not to be on the boundary

Weakly informative priors for covariance estimation

Chung et al. (2013, 2015)
bglmer R package, which also adds support for default prior penalties to

the fixed effects

What prior?

Default prior for random effects variance is 3logo/2
—

no guarding against infinite variance estimates

How much shrinkage for optimal frequentist properties?

Invariance to simple contrasts or scaling of covariates?



loannis Kosmidis - Maximum softly-penalized likelihood

Outline

2 Maximum softly-penalized likelihood



loannis Kosmidis - Maximum softly-penalized likelihood

Maximum softly-penalized likelihood

Setup:

Penalize (approximate) log-likelihood with penalty that diverges to —oo
when we approach the boundary of the parameter space

Ensure fixed effects estimates are equivariant under linear transformations
of the model parameters

Make penalization “soft”-enough for the MSPL estimator to have the
same optimal asymptotic properties expected by the ML estimator
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Definitions and notation

Model parameters
Let 6 = (8", ")T", where

1ﬁ = (|Og /11, ey |Og /qq7 /21, ceey /q17 /32, ey /q2, ey /qq_l)T

with /; (i > j) the (i, j)th element of L, from ¥ = s() = LLT

MPL estimator
For £(0) = log L(f3,s(+)) and penalty function P(0), define

0 =arg max {€(0) + P(9)}
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Composite penalties

Penalties of the form

P(0) = c1P(r)(B) + 2Py (¥)
>0, 6>0
P(r)(B) is the unscaled fixed effects penalty
P(,)(%) is the unscaled variance components penalty
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Py (8) and P, ()

Fixed effects penalty

Logarithm of Jeffreys' invariant prior for the corresponding GLM, i.e.

k
1
P(r)(8) = 5 log det Y X" WX;

X; collects the fixed effects covariates of cluster /
Wi is diagonal with jth diagonal element exp(x; 3)/{1 + exp(x; §)}>

Variance components penalty
Composition of negative Huber loss functions on the components of

7 1.2 .
—5X7, if x| <1
Pu(#) = D(logh)+ > D(lj), D(x) = {_2 o s
i=1

= |x| + 5, otherwise
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Non-boundary estimates

Let O(r), r € R, be a path in © such that lim,_, ., 0(r) € 00

P(r)(B) — —oc if at least one 3 diverges (K. and Firth, 2021, Th. 1)
P()(#) = —oc if at least one 1 diverges (by construction)

So, for any ¢ > 0 and ¢, > 0, P(6(r)) = —c0

Given that also ¢(6) is bounded from above and is not —oco for all 6 € ©,
it can be shown that

m All components of 3 and ¥ = 5(1/;) are finite
m ¥ is positive definite, with implied correlations away from —1 and 1
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Equivariance under linear transformations of fixed effects

ML estimates are equivariant under transformations of model parameters
(Zehna, 1966)

If the fixed-effects penalty behaves like the log-likelihood under linear
transformations v = Cf3, then the MPL estimators are equivariant

For any known C € RP*P, P(ry(CB) = P)(B) — logdet C. So, ¥ = Cj3
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Soft penalties for consistency and asymptotic normality |

Information accumulation and choice of ¢; and o

Choose scaling factors ¢, c; > 0 to control |[VP(6)] in terms of the
rates of information accumulation about the model parameters

Variances of fixed-effects linear predictors
Using the delta method, the square root of the average of the
approximate variances of x,.JTﬂ at 6=01is 2+/p/n, n= Zf.;l n;

For ci = o =24/p/n

Ive@) < £ 2pata 1) 1)

max |[Xi]se| +
1,s,t

S
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Soft penalties for consistency and asymptotic normality Il

Consistency and asymptotic normality

If max; s+ |[[Xi]st| = Op(n'/2) in (1), then similar arguments to those in
Ogden (2017) guarantee 6's consistency and asymptotic normality

max; s ¢ |[Xi]st| = Op(n*/?) is reasonable in practice. E.g.
m covariates encoding factors and interactions of those

m sub-Gaussian random variables with variance proxy o?
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3 Analyses and simulation results



Contrasts

ML MSPL
B B 2l B cB ol
Bo 15.88 Bo 8.41
(10.14) (3.43)
B2 —~12.93 B2 -7.23
(9.15) (3.21)
B3 ~14.81 83 —8.26
(9.89) (3.48)
Ba ~17.71 Ba ~10.10
(10.70) (3.84)
log o 231 2.31 231 log o 1.80 1.80 1.80
(0.64)  (0.64)  (0.64) (0.45)  (0.45)  (0.45)
Y0 182  -1.82 Y -1.70  -1.70
(3.92)  (3.92) (2.46)  (2.46)
7 17.71 17.74 7 1010 10.10
(10.70)  (10.75) (3.84)  (3.84)
72 4.78 4.78 7 2.88 2.88
(3.07)  (3.08) (1.86)  (1.86)
3 2.89 2.89 V3 1.85 1.85
(227)  (2.27) (1.60)  (1.60)




Estimates

® BGLMERJtwishart] ® BGLMER[normal,wishart] ® MSPL

—_— @ e————
Bo p— —
@
— —
B2 P —. ——
A
— o——
B P —
A
—_— —
Bs — ——

log(o) i

-10 0 10
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Simulation study

parameter  value
Bo 5.01
B2 —3.75
B3 —4.36
Ba —5.55
log o 1.26

R = 10000 independent samples

Ignore samples where any of the
m |estimated gradients| is > 1073, or

m |estimates| or estimated standard errors is > 30



Simulation results

Centred distributions

. ; r -

N . |-

Bs ’ ..,_-____ .

-10 -5 0 5 10

method -l- bglmer(t] -l- bglmer[n] -l- MSPL

o afF

7,1_
o
<21_

<, %



Simulation results

Bo

B2

Bs

Ba

log(o)

Bias

—
__q'" "'—_

o
N}

Variance MSE

o

U

-~ -

1
0.0 25 5.0 7510.0 0.0 2.5 5.0 7.510.0 0.00 0.25 0.50 0.75

method . bglmer(t] . bgimer{n] . MSPL
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Extreme fixed effects

Model

Hij

T
__:nij:X,jﬁ‘f'Ui
ij

Ui~N(0,9) (i=1,....5j=1,...,n),

Yi | uj ~ Bel’n(,uij) with  log 7

Covariates
xi1 =1, xj2 ~ N(0,1), x;3 ~ Bern(1/2), xjs ~ Bern(1/2), xis ~ Exp(1)

Simulation setup
B =(1,-0.5,1,0.25—1)
For each n € {50,100, 200}, simulate covariates

For each n € {50, 100,200} and A € (—10,10), draw 100 independent
response vectors from the model



Extreme fixed effects

Samples where

m |estimated partial derivative| for 33 is > 1073 or

m |estimate| or estimated standard error for 33 is > 30

A

-0 -8 -6 -4 -2 0 2 4 6 8 10

n =750 73 46 17 2 0 0 0 1 15 49 80

ML n =100 63 45 10 1 0 0 0 1 5 31 61
n = 200 65 26 8 0 0 0 0 o 2 24 49

n =50 1 0 0 0 0 1 0 O 0 0 0

bglmer[n] n =100 0 0 1 0 1 0 0 O 1 0 0
n = 200 0 0 0 0 0 0 0 o 0 0 0

n =50 1 0 0 0 0 0 0 o 0 0 0

bglmer][t] n =100 0 0 0 1 0 0 0 o 0 0 0
n = 200 0 0 1 0 1 0 0 O 0 0 0

n =50 0 0 0 0 0 0 0 O 0 0 0

MSPL n =100 0 0 0 0 0 0 0 o 0 1 0
n = 200 0 0 0 0 0 0 0 O 0 0 0




Extreme fixed effects

n E9 50 E3 100 B 200

5 MM***W* %{ MWW*WW
:%%ﬁ%%%##&%%

108 6 -4 -2 0 2 4 6 8 10
A
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Remarks

Soft penalization restores and preserves the optimal asymptotic
properties expected by ML, while ensuring no boundary estimates.

Concept is far more general and can be adopted in other GLMMs with
degenerate estimates (other links, nominal/ordinal responses).

Composite negative Huber loss penalty can be adapted to prevent
singular variance-covariance estimates more generally.

Reduced-bias M-estimation methodology (K. and Lunardon, 2021)
readily applies to MSPL estimators.
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A soft composite penalty

—2W{Pf) Py (%)}

Py (B) = zlogdetZX W, X;
i=1

q 1,2 :
L2 ifx <1
Py () = §D|03/11+§DU X—{ 5X ||x\__
i=1

= —|x| + 1, otherwise
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