Professor of Statistics
Department of Statistics, University of Warwick
ioannis.kosmidis@warwick.ac.uk
ikosmidis.com ikosmidis ikosmidis_
CCDA 2024
Department of Statistics, London School of Economics, London, UK
01 November 2025
Sterzinger P, Kosmidis I (2023). Diaconis-Ylvisaker prior penalized likelihood for \(p / n \to \kappa \in (0, 1)\) logistic regression. arXiv: 2311.11290
\(y_1, \ldots, y_n\) with \(y_i \in \{0, 1\}\)
\(x_1, \ldots, x_n\) with \(x_i \in \Re^p\)
\(Y_{1}, \ldots, Y_{n}\) conditionally independent with
\[ Y_i | x_i \sim \mathop{\mathrm{Bernoulli}}(\pi_i)\,, \quad \log \frac{\pi_i}{1 - \pi_i} = \eta_i = \sum_{t = 1}^p \beta_t x_{it} \]
\(\displaystyle l(\beta \,;\,y, X) = \sum_{i = 1}^n \left\{y_i \eta_i - \log\left(1 + e^{\eta_i}\right) \right\}\)
\(\hat{\beta} = \arg \max l(\beta \,;\,y, X)\)
\(\hat\beta := \beta^{(\infty)}\) where \(\displaystyle \beta^{(j + 1)} = \left(X^T W^{(j)} X\right)^{-1} X^T W^{(j)} z^{(j)}\)
\(W\) is a diagonal matrix with \(i\)th diagonal element \(\pi_i ( 1- \pi_i)\)
\(z_i = \eta_i + (y_i - \pi_i) / \{ \pi_i (1 - \pi_i) \}\) is the working variate
\(200\) binary images per digit (\(0\)-\(9\)) extracted maps from a Dutch public utility
Feature sets:
76 Fourier coefficients of the character shapes (rotation invariant) per digit
64 Karhunen-Lo`eve coefficients per digit
1000 digits for training + 1000 digits for testing
Explain the contribution of the feature sets in describing the digit ``7’’
Font, digitization noise, downscaling, complicate discrimination
If only rotation invariant features are used, “7” and “2” can look similar
Residual Df | Log-likelihood | Df | LR | pvalue |
---|---|---|---|---|
923 | 0.00 | |||
859 | 0.00 | 64 | 0.00 | 1 |
Model | Separation | Infinite estimates |
---|---|---|
fou + kar | True | True |
fou | True | True |
Perfect fits on the training data
1000 observations with 140 covariates
Adjust responses to \(\displaystyle y_i^* = \alpha y_i + \frac{1 - \alpha}{2}\) with \(\alpha \in [0, 1)\)1
Use ML estimation with the adjusted responses
\(\hat{\beta}^{\textrm{\small DY}}\) is unique and exists for all \(\{y, X\}\) configurations2, and \(\widehat{g(\beta)} = g(\hat\beta)\)
Df | PLR |
---|---|
64 | 64.36 |
\(1000 \times 140\) matrix \(X_{\rm fou + kar}\) is fixed
\(\beta_{\rm fou + kar} = (\beta_{\rm fou}^\top, 0_{64}^\top)^\top\)
\(\beta_{\rm fou}\) from i.i.d \(N(0, 1)\), rescaled so that \[ \widehat{\rm var}(X_{\rm fou + kar} \beta_{\rm fou + kar}) = \gamma^2 \]
Intercept: \(\delta \in \{-3, -2, -1, 0\}\)
Signal strength: \(\gamma^2 \in \{1, 2, 4, 8, 16\}\)
\(500\) response vectors per \((\delta, \gamma^2)\)
sharp phase transition about when the ML estimate has infinite components, when \(\eta_i = \delta + x_i^\top \beta\), \(x_i \stackrel{iid}{\sim} \mathop{\mathrm{N}}(0, \Sigma)\), \(p/n \to \kappa \in (0, 1)\), \(\mathop{\mathrm{var}}(x_i^\top\beta_0) \to \gamma^2\)
a method, based on approximate message passing (AMP), that for \(\delta = 0\) recovers estimation and inferential performance by appropriately rescaling \(\hat\beta\), whenever that exists.
?
For any \(\psi(\cdot, \cdot)\) is pseudo-Lipschitz of order 2, \[ \frac{1}{p} \sum_{j=1}^{p} \psi(\hat{\beta}^{\textrm{\small DY}}_j - {\mu}_{*}\beta_{0,j}, \beta_{0,j}) \overset{\textrm{a.s.}}{\longrightarrow} \mathop{\mathrm{E}}\left[\psi({\sigma}_{*}G, \bar{\beta})\right], \quad \textrm{as } n \to \infty \] where \(G \sim \mathop{\mathrm{N}}(0,1)\) is independent of \(\bar{\beta} \sim \pi_{\bar{\beta}}\)
\(\psi(t,u)\) | statistic | a.s. limit |
---|---|---|
\(t\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j - {\mu}_{*}\beta_{0,j}\right)\) | \(0\) |
\(t / {\mu}_{*}\) | \(\frac{1}{p} \sum_{j=1}^p \left(\hat{\beta}^{\textrm{\small DY}}_j / {\mu}_{*}- \beta_{0,j}\right)\) | \(0\) |
Solution \(({\mu}_{*}, {b}_{*}, {\sigma}_{*})\) to the system of nonlinear equations in \((\mu, b, \sigma)\)
\[ \begin{aligned} 0 & = \mathop{\mathrm{E}}\left[2 \zeta'(Z) Z \left\{\frac{1+{\color[rgb]{0.70,0.1,0.12}{\alpha}}}{2} - \zeta' \left(\textrm{prox}_{b \zeta}\left(Z_{*} + \frac{1+{\color[rgb]{0.70,0.1,0.12}{\alpha}}}{2}b\right) \right) \right\} \right] \\ 0 & = 1 - {\color[rgb]{0.70,0.1,0.12}{\kappa}} - \mathop{\mathrm{E}}\left[\frac{2 \zeta'(Z)}{1 + b \zeta''(\textrm{prox}_{b\zeta}\left(Z_{*} + \frac{1+{\color[rgb]{0.70,0.1,0.12}{\alpha}}}{2}b\right))} \right] \\ 0 & = \sigma^2 - \frac{b^2}{{\color[rgb]{0.70,0.1,0.12}{\kappa}}^2} \mathop{\mathrm{E}}\left[2 \zeta'(Z) \left\{\frac{1+{\color[rgb]{0.70,0.1,0.12}{\alpha}}}{2} - \zeta'\left(\textrm{prox}_{b\zeta}\left( Z_{*} + \frac{1+{\color[rgb]{0.70,0.1,0.12}{\alpha}}}{2}b\right)\right) \right\}^2 \right] \end{aligned} \tag{1}\]
\(Z \sim \mathop{\mathrm{N}}(0, {\color[rgb]{0.70,0.1,0.12}{\gamma}}^2)\)
\(Z_{*} = \mu Z + {\color[rgb]{0.70,0.1,0.12}{\kappa}}^{1/2} \sigma G\) with \(G \sim \mathop{\mathrm{N}}(0, 1)\) independent of \(Z\)
\(\textrm{prox}_{b\zeta}\left(x\right)=\arg\min_{u} \left\{ b\zeta(u) + \frac{1}{2} (x-u)^2 \right\}\) is the proximal operator
Solvers for nonlinear systems, after cubature approximation of expectations
Define the DY prior penalized likelihood ratio test statistic for \(H_0: \beta_{0,i_1} = \ldots = \beta_{0,i_k} = 0\) as \[ \Lambda_I = \underset{\beta \in \Re^p}{\max} \, \ell(\beta \,;\,y^*, X) - \underset{\substack{\beta \in \Re^p: \\ \beta_j = 0, \, j \in I }}{\max} \, \ell(\beta \,;\,y^*, X)\,, \quad I = \{i_1,\ldots,i_k\} \]
Then, \[ 2 \Lambda_{I} \overset{d}{\longrightarrow} \frac{\kappa \sigma_{*}^2}{b_{*}} \chi^2_k \]
\(\hat\kappa = p / n\)
Adaptation of the Signal Strength Leave-One-Out Estimator (SLOE) of Yadlowsky et al. (2021)
\[ \hat\gamma^2 = \frac{\sum_{i = 1}^n (s_i - \bar{s})^2}{n} \quad \text{with} \quad s_i = \hat{\eta}^{\textrm{\small DY}}_i - \frac{\hat{h}^{\textrm{\small DY}}_i}{1 - \hat{h}^{\textrm{\small DY}}_i} (\hat{z}^{\textrm{\small DY}}_i - \hat{\eta}^{\textrm{\small DY}}_i) \] where \(\hat{h}^{\textrm{\small DY}}_i\) is the hat value for the \(i\)th observation
A similar conjecture to Zhao et al. (2022, Conjecture 7.1), with state evolution given from a system of 4 equations in 4 unknowns
Test | Statistic | pvalue | Inf_fou_kar | Inf_fou |
---|---|---|---|---|
LR | 0.00 | 1.00 | True | True |
PLR | 64.36 | 0.46 | False | False |
rescaled PLR | 173.34 | 0.00 | False | False |
\(1000 \times 140\) matrix \(X_{\rm fou + kar}\) is fixed
\(\beta_{\rm fou + kar} = (\beta_{\rm fou}^\top, 0_{64}^\top)^\top\)
\(\beta_{\rm fou}\) from i.i.d \(N(0, 1)\), rescaled so that \[ \widehat{\rm var}(X_{\rm fou + kar} \beta_{\rm fou + kar}) = \gamma^2 \]
Intercept: \(\delta \in \{-3, -2, -1, 0\}\)
Signal strength: \(\gamma^2 \in \{1, 2, 4, 8, 16\}\)
\(500\) response vectors per \((\delta, \gamma^2)\)
Amount of shrinkage (value of \(\alpha\)) that results in \(\hat{\beta}^{\textrm{\small DY}}/ {\mu}_{*}\) having minimal asymptotic MSE
Better MSE than the rescaled MLE, whenever that exists
Sterzinger P, Kosmidis I (2023). Diaconis-Ylvisaker prior penalized likelihood for \(p / n \to \kappa \in (0, 1)\) logistic regression. arXiv: 2311.11290
Ioannis Kosmidis - High-dimensional logistic regression